14 research outputs found

    Crosslinking of and Coupling to Viral Capsid Proteins by Tyrosine Oxidation

    Get PDF
    AbstractCowpea mosaic virus is composed of 60 identical copies of a two-subunit protein organized in pentameric assemblies around the icosahedral 5-fold symmetry axis. Treatment of the virus with the Ni(II) complex of the tripeptide GGH and a peroxide oxidant, or irradiation in the presence of Ru(bpy)32+ and persulfate generates covalent crosslinks across the pentameric subunit boundaries, effectively stitching the subunits together. Intersubunit crosslinking was found to occur exclusively at adjacent tyrosine residues (Y52-Y103), as predicted from the X-ray crystal structure of the capsid, and to be more extensive with the photochemical ruthenium system. The Ni/GGH oxidative procedure was also used to make covalent attachments to the virion by trapping with a functionalized disulfide reagent

    Unnatural Amino Acid Incorporation into Virus-Like Particles

    Get PDF
    Virus-like particles composed of hepatitis B virus (HBV) or bacteriophage Qβ capsid proteins have been labeled with azide- or alkyne-containing unnatural amino acids by expression in a methionine auxotrophic strain of E. coli. The substitution does not affect the ability of the particles to self-assemble into icosahedral structures indistinguishable from native forms. The azide and alkyne groups were addressed by Cu(I)-catalyzed [3 + 2] cycloaddition: HBV particles were decomposed by the formation of more than 120 triazole linkages per capsid in a location-dependent manner, whereas Qβ suffered no such instability. The marriage of these well-known techniques of sense-codon reassignment and bioorthogonal chemical coupling provides the capability to construct polyvalent particles displaying a wide variety of functional groups with near-perfect control of spacing

    Cowpea Mosaic Virus Capsid: A Promising Carrier for the Development of Carbohydrate Based Antitumor Vaccines

    No full text
    Immunotherapy targeting tumor cell surface carbohydrates is a promising approach for cancer treatment. However, the low immunogenecity of carbohydrates presents a formidable challenge. We describe here the enhancement of carbohydrate immunogenicity by an ordered display on the surface of the cowpea mosaic virus (CPMV) capsid. The Tn glycan, which is overexpressed on numerous cancer cell surfaces, was selected as the model antigen for our study. Previously it has been shown that it is difficult to induce a strong T cell-dependent immune response against the monomeric form of Tn presented in several ways on different carriers. In this study, we first synthesized Tn antigens derivatized with either a maleimide or a bromoacetamide moiety that was conjugated selectively to a cysteine mutant of CPMV. The glyco-conjugate was then injected into mice and pre-and post-immune antibody levels in the mice sera were measured by enzyme linked immunosorbant assays. High total antibody titers and, more importantly, high IgG titers specific for Tn were obtained in the post-immune day 35 serum, suggesting the induction of T cell-dependent antibody isotype switching by the glyco-conjugate. The antibodies generated were able to recognize Tn antigens presented in their native conformations on the surfaces of both MCF-7 breast cancer cells and the multi-drug resistant breast cancer cell line NCI-ADR RES. These results suggest that the CPMV capsid can greatly enhance the immunogenicity of weak antigens such as Tn and this can provide a promising tool for the development of carbohydrate based anti-cancer vaccines

    Development of a Novel Vaccine Containing Binary Toxin for the Prevention of Clostridium difficile Disease with Enhanced Efficacy against NAP1 Strains.

    No full text
    Clostridium difficile infections (CDI) are a leading cause of nosocomial diarrhea in the developed world. The main virulence factors of the bacterium are the large clostridial toxins (LCTs), TcdA and TcdB, which are largely responsible for the symptoms of the disease. Recent outbreaks of CDI have been associated with the emergence of hypervirulent strains, such as NAP1/BI/027, many strains of which also produce a third toxin, binary toxin (CDTa and CDTb). These hypervirulent strains have been associated with increased morbidity and higher mortality. Here we present pre-clinical data describing a novel tetravalent vaccine composed of attenuated forms of TcdA, TcdB and binary toxin components CDTa and CDTb. We demonstrate, using the Syrian golden hamster model of CDI, that the inclusion of binary toxin components CDTa and CDTb significantly improves the efficacy of the vaccine against challenge with NAP1 strains in comparison to vaccines containing only TcdA and TcdB antigens, while providing comparable efficacy against challenge with the prototypic, non-epidemic strain VPI10463. This combination vaccine elicits high neutralizing antibody titers against TcdA, TcdB and binary toxin in both hamsters and rhesus macaques. Finally we present data that binary toxin alone can act as a virulence factor in animal models. Taken together, these data strongly support the inclusion of binary toxin in a vaccine against CDI to provide enhanced protection from epidemic strains of C. difficile
    corecore