553 research outputs found

    Second-order electronic correlation effects in a one-dimensional metal

    Full text link
    The Pariser-Parr-Pople (PPP) model of a single-band one-dimensional (1D) metal is studied at the Hartree-Fock level, and by using the second-order perturbation theory of the electronic correlation. The PPP model provides an extension of the Hubbard model by properly accounting for the long-range character of the electron-electron repulsion. Both finite and infinite version of the 1D-metal model are considered within the PPP and Hubbard approximations. Calculated are the second-order electronic-correlation corrections to the total energy, and to the electronic-energy bands. Our results for the PPP model of 1D metal show qualitative similarity to the coupled-cluster results for the 3D electron-gas model. The picture of the 1D-metal model that emerges from the present study provides a support for the hypothesis that the normal metallic state of the 1D metal is different from the ground state.Comment: 21 pages, 16 figures; v2: small correction in title, added 3 references, extended and reformulated a few paragraphs (detailed information at the end of .tex file); added color to figure

    Diversity of gut microflora is required for the generation of B cell with regulatory properties in a skin graft model

    Get PDF
    B cells have been reported to promote graft rejection through alloantibody production. However, there is growing evidence that B cells can contribute to the maintenance of tolerance. Here, we used a mouse model of MHC-class I mismatched skin transplantation to investigate the contribution of B cells to graft survival. We demonstrate that adoptive transfer of B cells prolongs skin graft survival but only when the B cells were isolated from mice housed in low sterility "conventional" (CV) facilities and not from mice housed in pathogen free facilities (SPF). However, prolongation of skin graft survival was lost when B cells were isolated from IL-10 deficient mice housed in CV facilities. The suppressive function of B cells isolated from mice housed in CV facilities correlated with an anti-inflammatory environment and with the presence of a different gut microflora compared to mice maintained in SPF facilities. Treatment of mice in the CV facility with antibiotics abrogated the regulatory capacity of B cells. Finally, we identified transitional B cells isolated from CV facilities as possessing the regulatory function. These findings demonstrate that B cells, and in particular transitional B cells, can promote prolongation of graft survival, a function dependent on licensing by gut microflora

    T-bet controls intestinal mucosa immune responses via repression of type 2 innate lymphoid cell function

    Get PDF
    Innate lymphoid cells (ILCs) play an important role in regulating immune responses at mucosal surfaces. The transcription factor T-bet is crucial for the function of ILC1s and NCR+ ILC3s and constitutive deletion of T-bet prevents the development of these subsets. Lack of T-bet in the absence of an adaptive immune system causes microbiota-dependent colitis to occur due to aberrant ILC3 responses. Thus, T-bet expression in the innate immune system has been considered to dampen pathogenic immune responses. Here, we show that T-bet plays an unexpected role in negatively regulating innate type 2 responses, in the context of an otherwise intact immune system. Selective loss of T-bet in ILCs leads to the expansion and increased activity of ILC2s, which has a functionally important impact on mucosal immunity, including enhanced protection from Trichinella spiralis infection and inflammatory colitis. Mechanistically, we show that T-bet controls the intestinal ILC pool through regulation of IL-7 receptor signalling. These data demonstrate that T-bet expression in ILCs acts as the key transcriptional checkpoint in regulating pathogenic vs. protective mucosal immune responses, which has significant implications for the understanding of the pathogenesis of inflammatory bowel diseases and intestinal infections

    Physical activity and sedentary behavior from 6 to 11 years

    Get PDF
    OBJECTIVES: Physical activity (PA) is presumed to decline during childhood and adolescence, but only few long-term studies about PA development during this period of life exist. We assessed PA and sedentary behavior (SB) over a 5-year period to gain a better understanding of the extent of change in activity and potential influencing factors. METHODS: PA and SB of 600 children from the Childhood Obesity Project were objectively measured with the SenseWear Armband 2 at the ages of 6, 8, and 11 years, resulting in 1254 observations. Longitudinal changes of total PA, moderate-to-vigorous physical activity (MVPA), light physical activity (LPA), and SB were modeled with mixed-effects models. RESULTS: Total PA revealed a significant quadratic decline with age (P < .001), resulting in a change of total PA by -75.3 minutes per day from 6 to 11 years. LPA linearly declined (P < .001) by 44.6 minutes per day, MVPA quadratically declined (P < .001) by an overall 30.7 minutes, whereas SB increased significantly (+107 minutes; P = .001). Boys showed a steeper decline in LPA (P = .003) and MVPA (P < .001) than did girls. Higher fat mass index and BMI z scores were associated with lower levels of total PA and MVPA and higher levels of SB (all P < .001). CONCLUSIONS: We showed that PA decreased, and SB increased in earlier years than previously thought. MVPA remained relatively stable until 8 years, but revealed a drop-off at 11 years, identifying this period as a crucial time for intervention

    Cherenkov Telescope Array Data Management

    Get PDF
    Very High Energy gamma-ray astronomy with the Cherenkov Telescope Array (CTA) is evolving towards the model of a public observatory. Handling, processing and archiving the large amount of data generated by the CTA instruments and delivering scientific products are some of the challenges in designing the CTA Data Management. The participation of scientists from within CTA Consortium and from the greater worldwide scientific community necessitates a sophisticated scientific analysis system capable of providing unified and efficient user access to data, software and computing resources. Data Management is designed to respond to three main issues: (i) the treatment and flow of data from remote telescopes; (ii) "big-data" archiving and processing; (iii) and open data access. In this communication the overall technical design of the CTA Data Management, current major developments and prototypes are presented.Comment: 8 pages, 2 figures, In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    The Drift Chambers Of The Nomad Experiment

    Get PDF
    We present a detailed description of the drift chambers used as an active target and a tracking device in the NOMAD experiment at CERN. The main characteristics of these chambers are a large area, a self supporting structure made of light composite materials and a low cost. A spatial resolution of 150 microns has been achieved with a single hit efficiency of 97%.Comment: 42 pages, 26 figure

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic

    Production properties of K*(892) vector mesons and their spin alignment as measured in the NOMAD experiment

    Get PDF
    First measurements of K*(892) mesons production properties and their spin alignment in nu_mu charged current (CC) and neutral current (NC) interactions are presented. The analysis of the full data sample of the NOMAD experiment is performed in different kinematic regions. For K*+ and K*- mesons produced in nu_mu CC interactions and decaying into K0 pi+/- we have found the following yields per event: (2.6 +/- 0.2 (stat.) +/- 0.2 (syst.))% and (1.6 +/- 0.1 (stat.) +/- 0.1 (syst.))% respectively, while for the K*+ and K*- mesons produced in nu NC interactions the corresponding yields per event are: (2.5 +/- 0.3 (stat.) +/- 0.3 (syst.))% and (1.0 +/- 0.3 (stat.) +/- 0.2 (syst.))%. The results obtained for the rho00 parameter, 0.40 +/- 0.06 (stat) +/- 0.03 (syst) and 0.28 +/- 0.07 (stat) +/- 0.03 (syst) for K*+ and K*- produced in nu_mu CC interactions, are compared to theoretical predictions tuned on LEP measurements in e+e- annihilation at the Z0 pole. For K*+ mesons produced in nu NC interactions the measured rho00 parameter is 0.66 +/- 0.10 (stat) +/- 0.05 (syst).Comment: 20 p

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.
    • …
    corecore