2,145 research outputs found

    Chemokine-induced secretion of gelatinase B in primary human monocytes

    Get PDF
    Chemokines help control normal leukocyte trafficking as well as their infiltration into tissues during acute and chronic inflammation. Matrix metalloproteinases (MMPs) help support the extravasation and infiltration of leukocytes through limited proteolysis of basement membranes and matrix material. The effect of the chemokines RANTES/CCL5, MCP-1/CCL and SDF-1 /CXCL12 on secretion of the matrix metalloproteinase B and its endogenous inhibitor TIMP-1 was studied. RANTES/CCL5 and SDF-1/CXCL12 were found to induce MMP-9 secretion in primary human monocytes while TIMP-1 secretion was not affected. RANTES/CCL5 effects were mediated through CCR1 because the CCR1 antagonist BX471 was found to effectively block RANTES/CCL5-induced MMP-9 secretion

    The calpastatin-derived calpain inhibitor CP1B reduces mRNA expression of matrix metalloproteinase-2 and-9 and invasion by leukemic THP-1 cells

    Get PDF
    The ubiquitous proteases Ό- and m-calpain are Ca2+-dependent cysteine endopeptidases. Besides involvement in a variety of physio(patho)logical processes, recent studies suggest a pivotal role of calpains in differentiation of hematopoietic cells and tumor cell invasion. However, the precise actions of calpains and their endogenous inhibitor, calpastatin, in these processes are only partially understood. Here we have studied the role of the calpain/calpastatin system in the invasion of leukemic cells under basal and differentiationstimulating conditions. To further differentiate the human leukaemic cell line THP-1 (monocytic), the cells were treated for 24 hours with the differentiationstimulating reagents phorbol 12-myristate 13-acetate (PMA) and dimethyl sulfoxide (DMSO). Macrophage and granulocytelike differentiation was confirmed by induction of vimentin expression as well as by microscopic and fluorescence assisted cytometric analysis. Extracellular matrix (ECM) invasion of both the basal and differentiation stimulated cells in a Matrigel assay was inhibited by preincubation of the cells with the specific calpain inhibitor CP1B for 24 hours. Inhibition of invasiveness correlated with decreased mRNA expression and secretion of the matrix metalloproteinases MMP-2 and MMP-9. In contrast, addition of CP1B only during the invasion process did neither influence transmigration nor MMP release. This is the first report showing that the calpain/calpastatin system mediates MMPmRNA expression of the leukemic THP-1 cells and as a consequence their invasiveness

    Novel bi- and trifunctional inhibitors of tumor-associated proteolytic systems

    Get PDF
    Serine proteases, cysteine proteases, and matrix metalloproteinases (MMPs) are involved in cancer cell invasion and metastasis. Recently, a recombinant bifunctional inhibitor (chCysuPA(19-31)) directed against cysteine proteases and the urokinasetype plasminogen activator (uPA)/plasmin serine protease system was generated by introducing the uPA receptor (uPAR)binding site of uPA into chicken cystatin (chCysWT). In the present study, we designed and recombinantly produced multifunctional inhibitors also targeting MMPs. The inhibitors comprise the Nterminal inhibitory domain of human TIMP-1 (tissue inhibitor of matrix metalloproteinase-1) or TIMP-3, fused to chCysuPA(19-31) or chCysWT. As demonstrated by various techniques, these fusion proteins effectively interfere with all three targeted protease systems. In in vitro Matrigel invasion assays, the addition of recombinant inhibitors strongly reduced invasion of ovarian cancer cells (OVMZ-6\#8). Additionally, OVMZ 6\#8 cells were stably transfected with expression plasmids encoding the various inhibitors. Synthesis and secretion of the inhibitors was verified by a newly developed ELISA, which selectively detects the recombinant proteins. Invasive capacity of inhibitorproducing cells was significantly reduced compared to vectortransfected control cells. Thus, these novel, compact, and smallsize inhibitors directed against up to three different tumorassociated proteolytic systems may represent promising agents for prevention of tumor cell migration and metastasis

    Albumin enhanced morphometric image analysis in CLL.

    Get PDF
    BACKGROUND: The heterogeneity of lymphocytes from patients with chronic lymphocytic leukemia (CLL) and blood film artifacts make morphologic subclassification of this disease difficult. METHODS: We reviewed paired blood films prepared from ethylene-diamine-tetraacetic acid (ETDA) samples with and without bovine serum albumin (BSA) from 82 CLL patients. Group 1 adhered to NCCLS specifications for the preparations of EDTA blood films. Group 2 consisted of blood films containing EDTA and a 1:12 dilution of 22% BSA. Eight patients were selected for digital photomicroscopy and statistical analysis. Approximately 100 lymphocytes from each slide were digitally captured. RESULTS: The mean cell area +/- standard error was 127.8 microm(2) +/- 1.42 for (n = 793) for group 1 versus 100.7 microm(2) +/- 1.39 (n = 831) for group 2. The nuclear area was 88.9 microm(2) +/- 0.85 for group 1 versus 76.4 microm(2) +/- 0.83 for group 2. For the nuclear transmittance, the values were 97.6 +/- 0.85 for group 1 and 104.1 +/- 0.83 for group 2. The nuclear:cytoplasmic ratios were 0.71 +/- 0.003 for group 1 and 0.78 +/- 0.003 for group 2. All differences were statistically significant (P \u3c 0.001). CONCLUSIONS: BSA addition results in the reduction of atypical lymphocytes and a decrease in smudge cells. BSA also decreases the lymphocyte area and nuclear area, whereas nuclear transmittance and nuclear:cytoplasmic ratio are increased. A standardized method of slide preparation would allow accurate interlaboratory comparison. The use of BSA may permit better implementation of the blood film-based subclassification of CLL and lead to a better correlation of morphology with cytogenetics and immunophenotyping. Published 2003 Wiley-Liss, Inc

    Immunophenotypic signatures of benign and dysplastic granulopoiesis by cytomic profiling

    Full text link
    Background: The role of flow cytometry (FCM) in diagnosing myelodysplastic syndromes (MDS) remains controversial, because analysis of myeloid maturation may involve subjective interpretation of sometimes subtle patterns on multiparameter FCM. Methods: Using six‐parameter marker combinations known to be useful in evaluating the myeloid compartment in MDS, we measured objective immunophenotypic differences between non‐neoplastic ( n = 25) and dysplastic ( n = 17) granulopoiesis using a novel method, called Fisher information nonparametric embedding (FINE), that measures information distances among FCM datasets modeled as individual high‐dimensional probability density functions, rather than as sets of two‐dimensional histograms. Information‐preserving component analysis (IPCA) was used to create information‐optimized “rotated” two‐dimensional histograms for visualizing myelopoietic immunophenotypes for each individual sample. Results: There was a consistent trend of segregation of higher‐grade MDS (RAEB and RCMD) from benign by FINE analysis. This difference was accentuated in cases with morphologic dysgranulopoiesis and in cases with clonal cytogenetic abnormalities. However, lower grades of MDS or cases that lacked morphologic dysgranulopoiesis showed much greater overlap with non‐neoplastic cases. Two cases of reactive left shift were consistently embedded within the higher‐grade MDS group. IPCA yielded two‐dimensional histogram projections for each individual case by relative weighting of measured cellular characteristics, optimized for preserving information distances derived through FINE. Conclusions: Objective analysis by information geometry supports the conclusions of previous studies that there are immunophenotypic differences in the maturation patterns of benign granulopoiesis and high grade MDS, but also reinforces the known pitfalls of overlap between low‐grade MDS and benign granulopoiesis and overlap between reactive granulocytic left shifts and dysplastic granulopoiesis. © 2011 International Clinical Cytometry SocietyPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87051/1/20592_ftp.pd

    Inflammatory Gene Expression Patterns Revealed by DNA Microarray Analysis in TNF-α-treated SGBS Human Adipocytes

    Get PDF
    We report here the use of human inflammation arrays to study the inflammatory gene expression profile of TNF-α-treated human SGBS adipocytes. Human preadipocytes (SGBS) were induced to differentiate in primary culture, and adipocyte differentiation was confirmed, using Oil Red O staining. We treated the differentiated adipocytes with TNF-α, and RNA from differentiated adipocytes with or without TNF-α treatment was hybridized to MWG human inflammation arrays to compare expression profiles. Eleven genes were up- or down-regulated in TNF-α-treated adipocytes. As revealed by array analysis, among 6 up-regulated genes, only eotaxin-1, monocyte chemoattractant protein-1 (MCP-1), and vascular cell adhesion molecule 1 isoform a precursor (VCAM1) were confirmed by real-time polymerase chain reaction (PCR). Similarly, among 5 down-regulated genes, only IL-1 family member 5 (IL1F5), a disintegrin and metalloprotease with thrombospondin motifs-1 preproprotein (ADAMTS1), fibronectin 1 isoform 1 preprotein (FN1), and matrix metalloproteinase 15 preprotein (MMP15) were confirmed by real-time PCR. There was a substantial increase (50-fold) in eotaxin-1 in response to TNF-α. Taken together, we have identified several inflammatory molecules expressed in SGBS adipocytes and discovered molecular factors explaining the relationship between obesity and atherosclerosis, focusing on inflammatory cytokines expressed in the TNF-α-treated SGBS cells. Further investigation into the role of these up- or down-regulated cytokine genes during the pathological processes leading to the development of atherosclerosis is warranted

    Micronutrient synergy—a new tool in effective control of metastasis and other key mechanisms of cancer

    Get PDF
    Consumption of a plant-based diet has been associated with prevention of the development and progression of cancer. We have developed strategies to inhibit cancer development and its spread by targeting common mechanisms used by all types of cancer cells that decrease stability and integrity of connective tissue. Strengthening of collagen and connective tissue can be achieved naturally through the synergistic effects of selected nutrients, such as lysine, proline, ascorbic acid and green tea extract (NM). This micronutrient mixture has exhibited a potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines. Its anti-cancer effects include inhibition of metastasis, tumor growth, matrix metalloproteinase (MMP) secretion, invasion, angiogenesis, and cell growth as well as induction of apoptosis. Many cancers are often diagnosed at later stages, when metastasis has occurred, which standard treatment has been unable to control. Our studies on NM effects on hepatic and pulmonary metastasis demonstrated profound, significant suppression of metastasis in a murine model. Evaluation of effects of NM on xenografts in murine models demonstrated significant reduction in tumor size and tumor burden in all human cancer cell lines tested. In vitro studies demonstrated that NM was very effective in inhibition of cell proliferation (by MTT assay), MMP secretion (by gelatinase zymography), cell invasion (through Matrigel), cell migration (by scratch test), induction of apoptosis (by live green caspase) and induction of pro-apoptotic genes in many diverse cancer cell lines. Furthermore, in vivo and in vitro studies of effects of individual micronutrients compared to their specific combination demonstrated synergistic effects resulting in improved anticancer potency
    • 

    corecore