41 research outputs found

    Characterization methods dedicated to nanometer-thick hBN layers

    Full text link
    Hexagonal boron nitride (hBN) regains interest as a strategic component in graphene engineering and in van der Waals heterostructures built with two dimensional materials. It is crucial then, to handle reliable characterization techniques capable to assess the quality of structural and electronic properties of the hBN material used. We present here characterization procedures based on optical spectroscopies, namely cathodoluminescence and Raman, with the additional support of structural analysis conducted by transmission electron microscopy. We show the capability of optical spectroscopies to investigate and benchmark the optical and structural properties of various hBN thin layers sources

    Quantum well confinement and competitive radiative pathways in the luminescence of black phosphorus layers

    Full text link
    Black phosphorus (BP) stands out from other 2D materials by the wide amplitude of the band-gap energy (Delta(Eg)) that sweeps an optical window from Visible (VIS) to Infrared (IR) wavelengths, depending on the layer thickness. This singularity made the optical and excitonic properties of BP difficult to map. Specifically, the literature lacks in presenting experimental and theoretical data on the optical properties of BP on an extended thickness range. Here we report the study of an ensemble of photoluminescence spectra from 79 passivated BP flakes recorded at 4 K with thicknesses ranging from 4 nm to 700 nm, obtained by mechanical exfoliation. We observe that the exfoliation steps induce additional defects states that compete the radiative recombination from bound excitons observed in the crystal. We also show that the evolution of the photoluminescence energy versus thickness follows a quantum well confinement model appreciable from a thickness predicted and probed at 25 nm. The BP slabs placed in different 2D heterostructures show that the emission energy is not significantly modulated by the dielectric environment. Introduction Confinement effectsComment: 11 pages, 3 figures - Main text 12 pages, 5 figures - Supporting informatio

    Distinguishing different stackings in layered materials via luminescence spectroscopy

    Full text link
    Despite its simple crystal structure, layered boron nitride features a surprisingly complex variety of phonon-assisted luminescence peaks. We present a combined experimental and theoretical study on ultraviolet-light emission in hexagonal and rhombohedral bulk boron nitride crystals. Emission spectra of high-quality samples are measured via cathodoluminescence spectroscopy, displaying characteristic differences between the two polytypes. These differences are explained using a fully first-principles computational technique that takes into account radiative emission from ``indirect'', finite-momentum, excitons via coupling to finite-momentum phonons. We show that the differences in peak positions, number of peaks and relative intensities can be qualitatively and quantitatively explained, once a full integration over all relevant momenta of excitons and phonons is performed.Comment: Main: 6 pages and 4 figures, Supplementary: 6 pages and 7 figure

    Distinguishing Different Stackings in Layered Materials via Luminescence Spectroscopy

    Get PDF
    peer reviewedDespite its simple crystal structure, layered boron nitride features a surprisingly complex variety of phonon-assisted luminescence peaks. We present a combined experimental and theoretical study on ultraviolet-light emission in hexagonal and rhombohedral bulk boron nitride crystals. Emission spectra of high-quality samples are measured via cathodoluminescence spectroscopy, displaying characteristic differences between the two polytypes. These differences are explained using a fully first-principles computational technique that takes into account radiative emission from “indirect,” finite-momentum excitons via coupling to finite-momentum phonons.We show that the differences in peak positions, number of peaks, and relative intensities can be qualitatively and quantitatively explained, once a full integration over all relevant momenta of excitons and phonons is performed
    corecore