706 research outputs found
Recommended from our members
Age differences in brain activity during emotion processing: reflections of age-Related decline or increased emotion regulation?
Despite the fact that physical health and cognitive abilities decline with aging, the ability to regulate emotion remains stable and in some aspects improves across the adult life span. Older adults also show a positivity effect in their attention and memory, with diminished processing of negative stimuli relative to positive stimuli compared with younger adults. The current paper reviews functional magnetic resonance imaging studies investigating age-related differences in emotional processing and discusses how this evidence relates to two opposing theoretical accounts of older adults’ positivity effect. The aging-brain model [Cacioppo et al. in: Social Neuroscience: Toward Understanding the Underpinnings of the Social Mind. New York, Oxford University Press, 2011] proposes that older adults’ positivity effect is a consequence of age-related decline in the amygdala, whereas the cognitive control hypothesis [Kryla-Lighthall and Mather in: Handbook of Theories of Aging, ed 2. New York, Springer, 2009; Mather and Carstensen: Trends Cogn Sci 2005;9:496–502; Mather and Knight: Psychol Aging 2005;20:554–570] argues that the positivity effect is a result of older adults’ greater focus on regulating emotion. Based on evidence for structural and functional preservation of the amygdala in older adults and findings that older adults show greater prefrontal cortex activity than younger adults while engaging in emotion-processing tasks, we argue that the cognitive control hypothesis is a more likely explanation for older adults’ positivity effect than the aging-brain model
Elemental spatial and temporal association formation in left temporal lobe epilepsy
The mesial temporal lobe (MTL) is typically understood as a memory structure in clinical settings, with the sine qua non of MTL damage in epilepsy being memory impairment. Recent models, however, understand memory as one of a number of higher cognitive functions that recruit the MTL through their reliance on more fundamental processes, such as “self-projection” or “association formation”. We examined how damage to the left MTL influences these fundamental processes through the encoding of elemental spatial and temporal associations. We used a novel fMRI task to image the encoding of simple visual stimuli, either rich or impoverished, in spatial or spatial plus temporal information. Participants included 14 typical adults (36.4 years, sd. 10.5 years) and 14 patients with left mesial temporal lobe damage as evidenced by a clinical diagnosis of left temporal lobe epilepsy (TLE) and left MTL impairment on imaging (34.3 years, sd. 6.6 years). In-scanner behavioral performance was equivalent across groups. In the typical group whole-brain analysis revealed highly significant bilateral parahippocampal activation (right > left) during spatial associative processing and left hippocampal/parahippocampal deactivation in joint spatial-temporal associative processing. In the left TLE group identical analyses indicated patients used MTL structures contralateral to the seizure focus differently and relied on extra-MTL regions to a greater extent. These results are consistent with the notion that epileptogenic MTL damage is followed by reorganization of networks underlying elemental associative processes. In addition, they provide further evidence that task-related fMRI deactivation can meaningfully index brain function. The implications of these findings for clinical and cognitive neuropsychological models of MTL function in TLE are discussed
Observation of Orbitally Excited B_s Mesons
We report the first observation of two narrow resonances consistent with
states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar
collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the
Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed
as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+,
\bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1})
= 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
The Insertion and Transport of Anandamide in Synthetic Lipid Membranes Are Both Cholesterol-Dependent
International audienceBackground: Anandamide is a lipid neurotransmitter which belongs to a class of molecules termed the endocannabinoids involved in multiple physiological functions. Anandamide is readily taken up into cells, but there is considerable controversy as to the nature of this transport process (passive diffusion through the lipid bilayer vs. involvement of putative proteic transporters). This issue is of major importance since anandamide transport through the plasma membrane is crucial for its biological activity and intracellular degradation. The aim of the present study was to evaluate the involvement of cholesterol in membrane uptake and transport of anandamide.Methodology/Principal Findings: Molecular modeling simulations suggested that anandamide can adopt a shape that is remarkably complementary to cholesterol. Physicochemical studies showed that in the nanomolar concentration range, anandamide strongly interacted with cholesterol monolayers at the air-water interface. The specificity of this interaction was assessed by: i) the lack of activity of structurally related unsaturated fatty acids (oleic acid and arachidonic acid at 50 nM) on cholesterol monolayers, and ii) the weak insertion of anandamide into phosphatidylcholine or sphingomyelin monolayers. In agreement with these data, the presence of cholesterol in reconstituted planar lipid bilayers triggered the stable insertion of anandamide detected as an increase in bilayer capacitance. Kinetics transport studies showed that pure phosphatidylcholine bilayers were weakly permeable to anandamide. The incorporation of cholesterol in phosphatidylcholine bilayers dose-dependently stimulated the translocation of anandamide.Conclusions/Significance: Our results demonstrate that cholesterol stimulates both the insertion of anandamide into synthetic lipid monolayers and bilayers, and its transport across bilayer membranes. In this respect, we suggest that besides putative anandamide protein-transporters, cholesterol could be an important component of the anandamide transport machinery. Finally, this study provides a mechanistic explanation for the key regulatory activity played by membrane cholesterol in the responsiveness of cells to anandamide
Recommended from our members
Aging is associated with a prefrontal lateral-medial shift during picture-induced negative affect
The capacity to adaptively respond to negative emotion is in part dependent upon lateral areas of the prefrontal cortex (PFC). Lateral PFC areas are particularly susceptible to age-related atrophy, which affects executive function (EF). We used structural and functional magnetic resonance imaging (MRI) to test the hypothesis that older age is associated with greater medial PFC engagement during processing of negative information, and that this engagement is dependent upon the integrity of grey matter structure in lateral PFC as well as EF. Participants (n = 64, 38–79 years) viewed negative and neutral scenes while in the scanner, and completed cognitive tests as part of a larger study. Grey matter probability (GMP) was computed to index grey matter integrity. FMRI data demonstrated less activity in the left ventrolateral PFC (VLPFC) and greater ventromedial PFC (VMPFC) activity with increasing age during negative-picture viewing. Age did not correlate with amygdala responding. GMP in VLPFC and EF were negatively associated with VMPFC activity. We conclude that this change from lateral to medial PFC engagement in response to picture-induced negative affect reflects decreased reliance on executive function-related processes, possibly associated with reduced grey matter in lateral PFC, with advancing age to maintain emotional functioning
Widespread Gene Conversion of Alpha-2-Fucosyltransferase Genes in Mammals
The alpha-2-fucosyltransferases (α2FTs) are enzymes involved in the biosynthesis of α2fucosylated glycan structures. In mammalian genomes, there are three α2FT genes located in tandem—FUT1, FUT2, and Sec1—each contained within a single exon. It has been suggested that these genes originated from two successive duplications, with FUT1 being generated first and FUT2 and Sec1 second. Despite gene conversion being considered the main mechanism of concerted evolution in gene families, previous studies of primates α2FTs failed to detect it, although the occurrence of gene conversion between FUT2 and Sec1 was recently reported in a human allele. The primary aim of our work was to initiate a broader study on the molecular evolution of mammalian α2FTs. Sequence comparison leads us to confirm that the three genes appeared by two rounds of duplication. In addition, we were able to detect multiple gene-conversion events at the base of primates and within several nonprimate species involving FUT2 and Sec1. Gene conversion involving FUT1 and either FUT2 or Sec1 was also detected in rabbit. The extent of gene conversion between the α2FTs genes appears to be species-specific, possibly related to functional differentiation of these genes. With the exception of rabbits, gene conversion was not observed in the region coding the C-terminal part of the catalytic domain. In this region, the number of amino acids that are identical between FUT1 and FUT2, but different in Sec1, is higher than in other parts of the protein. The biologic meaning of this observation may be related to functional constraints
Dkk4 and Eda Regulate Distinctive Developmental Mechanisms for Subtypes of Mouse Hair
The mouse hair coat comprises protective “primary” and thermo-regulatory “secondary” hairs. Primary hair formation is ectodysplasin (Eda) dependent, but it has been puzzling that Tabby (Eda-/y) mice still make secondary hair. We report that Dickkopf 4 (Dkk4), a Wnt antagonist, affects an auxiliary pathway for Eda-independent development of secondary hair. A Dkk4 transgene in wild-type mice had no effect on primary hair, but secondary hairs were severely malformed. Dkk4 action on secondary hair was further demonstrated when the transgene was introduced into Tabby mice: the usual secondary follicle induction was completely blocked. The Dkk4-regulated secondary hair pathway, like the Eda-dependent primary hair pathway, is further mediated by selective activation of Shh. The results thus reveal two complex molecular pathways that distinctly regulate subtype-based morphogenesis of hair follicles, and provide a resolution for the longstanding puzzle of hair formation in Tabby mice lacking Eda
Rhetorical Transformations in Multimodal Advertising Texts: From General to Local Degree Zero
The use of rhetoric in advertising research has been steadily gaining momentum since the 1980’s. Coupled with an increased interest in multimodality and the multiple interactions among verbal, pictorial and auditory registers, as structural components of an ad filmic text, the hermeneutic tools furnished by traditional rhetoric have been expanded and elaborated. This paper addresses the fundamental question of how ad filmic texts assume signification from a multimodal rhetorical point of view, by engaging in a fruitful dialogue with various research streams within the wider semiotic discipline and consumer research. By critically addressing the context of analysis of a multimodal ad text in the course of the argumentation deployed by different approaches, such as Social Semiotics (Kress/Leeuwen 2001), Film Semiotics (i.e. Metz 1982, Carroll 1980, Branigan 1982), Visual Semiotics (i.e. Sonesson 2008; 2010, Eco 1972;1976;1986, Groupe " 1992), Consumer Research (i.e. Mick/McQuarrie 1999; 2004, Philips 2003, Scott 1994), the relative merits of a structuralist approach that prioritizes the distinction between local and general degree zero, as put forward by Groupe " (1992), are highlighted. Furthermore, the modes whereby rhetorical transformations are enacted are outlined, with view to deepening the conceptual tackling of degree zero of signification, while addressing its applicability to branding discourse and multimodal ad texts
Identification of Mechanosensitive Genes during Embryonic Bone Formation
Although it is known that mechanical forces are needed for normal bone
development, the current understanding of how biophysical stimuli are
interpreted by and integrated with genetic regulatory mechanisms is limited.
Mechanical forces are thought to be mediated in cells by
“mechanosensitive” genes, but it is a challenge to
demonstrate that the genetic regulation of the biological system is dependant on
particular mechanical forces in vivo. We propose a new means of selecting
candidate mechanosensitive genes by comparing in vivo gene expression patterns
with patterns of biophysical stimuli, computed using finite element analysis. In
this study, finite element analyses of the avian embryonic limb were performed
using anatomically realistic rudiment and muscle morphologies, and patterns of
biophysical stimuli were compared with the expression patterns of four candidate
mechanosensitive genes integral to bone development. The expression patterns of
two genes, Collagen X (ColX) and Indian hedgehog (Ihh), were shown to colocalise
with biophysical stimuli induced by embryonic muscle contractions, identifying
them as potentially being involved in the mechanoregulation of bone formation.
An altered mechanical environment was induced in the embryonic chick, where a
neuromuscular blocking agent was administered in ovo to modify skeletal muscle
contractions. Finite element analyses predicted dramatic changes in levels and
patterns of biophysical stimuli, and a number of immobilised specimens exhibited
differences in ColX and Ihh expression. The results obtained indicate that
computationally derived patterns of biophysical stimuli can be used to inform a
directed search for genes that may play a mechanoregulatory role in particular
in vivo events or processes. Furthermore, the experimental data demonstrate that
ColX and Ihh are involved in mechanoregulatory pathways and may be key mediators
in translating information from the mechanical environment to the molecular
regulation of bone formation in the embryo
Prevalence and factors associated with difficulty and intention to quit smoking in Switzerland
ABSTRACT: BACKGROUND: Recent data indicate a slight decrease in the prevalence of smoking in Switzerland, but little is known regarding the intention and difficulty to quit smoking among current smokers. Hence, we aimed to quantify the difficulty and intention to quit smoking among current smokers in Switzerland. METHODS: Cross-sectional study including 607 female and 658 male smokers. Difficulty, intention and motivation to quit smoking were assessed by questionnaire. RESULTS: 90% of women and 85% of men reported being "very difficult" or "difficult" to quit smoking. Almost three quarters of smokers (73% of women and 71% of men) intended to quit; however, less than 20% of them were in the preparation stage and 40% were in the precontemplation stage. On multivariate analysis, difficulty to quit was lower among men (Odds ratio and 95% [confidence interval]: 0.51 [0.35-0.74]) and increased with nicotine dependence and number of previous quitting attempts (OR=3.14 [1.75-5.63] for 6+ attempts compared to none). Intention to quit decreased with increasing age (OR=0.48 [0.30-0.75] for [greater than or equal to]65 years compared to <45 years) and increased with nicotine dependence, the number of previous quitting attempts (OR=4.35 [2.76-6.83] for 6+ attempts compared to none) and among non-cigarette smokers (OR=0.51 [0.28-0.92]). Motivation to quit was inversely associated with nicotine dependence and positively associated with the number of previous quitting attempts and personal history of lung disease. CONCLUSION: Over two thirds of Swiss smokers want to quit. However, only a small fraction wishes to do so in the short term. Nicotine dependence, previous attempts to quit or previous history of lung disease are independently associated with difficulty and intention to quit
- …