450 research outputs found

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Measurement of the prompt D0D^0 nuclear modification factor in ppPb collisions at sNN=8.16\sqrt{s_\mathrm{NN}} = 8.16 TeV

    No full text
    International audienceThe production of prompt D0D^0 mesons in proton-lead collisions in the forward and backward configurations at a center-of-mass energy per nucleon pair of sNN=8.16 TeV\sqrt{s_\mathrm{NN}} = 8.16~\mathrm{TeV} is measured by the LHCb experiment. The nuclear modification factor of prompt D0D^0 mesons is determined as a function of the transverse momentum pTp_\mathrm{T}, and rapidity in the nucleon-nucleon center-of-mass frame yy^*. In the forward rapidity region, significantly suppressed production with respect to pppp collisions is measured, which provides significant constraints of nuclear parton distributions and hadron production down to the very low Bjorken-xx region of 105\sim 10^{-5}. In the backward rapidity region, a suppression with a significance of 2.0 - 3.8 standard deviations compared to nPDF expectations is found in the kinematic region of pT>6 GeV/cp_\mathrm{T}>6~\mathrm{GeV}/c and 3.25<y<2.5-3.25<y^*<-2.5, corresponding to x0.01x\sim 0.01

    Search for the rare hadronic decay Bs0ppˉB_s^0\to p \bar{p}

    No full text
    A search for the rare hadronic decay Bs0→pp¯ is performed using proton-proton collision data recorded by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6  fb-1. No evidence of the decay is found and an upper limit on its branching fraction is set at B(Bs0→pp¯)&lt;4.4(5.1)×10-9 at 90% (95%) confidence level; this is currently the world’s best upper limit. The decay mode B0→pp¯ is measured with very large significance, confirming the first observation by the LHCb experiment in 2017. The branching fraction is determined to be B(B0→pp¯)=(1.27±0.15±0.05±0.04)×10-8, where the first uncertainty is statistical, the second is systematic and the third is due to the external branching fraction of the normalization channel B0→K+π-. The combination of the two LHCb measurements of the B0→pp¯ branching fraction yields B(B0→pp¯)=(1.27±0.13±0.05±0.03)×10-8.A search for the rare hadronic decay Bs0ppˉB_s^0\to p \bar{p} is performed using proton-proton collision data recorded by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb1^{-1}. No evidence of the decay is found and an upper limit on its branching fraction is set at B(Bs0ppˉ)<4.4 (5.1)×109{\cal B}(B_s^0\to p \bar{p}) < 4.4~(5.1) \times 10^{-9} at 90% (95%) confidence level; this is currently the world's best upper limit. The decay mode B0ppˉB^0\to p \bar{p} is measured with very large significance, confirming the first observation by the LHCb experiment in 2017. The branching fraction is determined to be B(B0ppˉ)=(1.27±0.15±0.05±0.04)×108{\cal B}(B^0\to p \bar{p}) = \rm (1.27 \pm 0.15 \pm 0.05 \pm 0.04) \times 10^{-8}, where the first uncertainty is statistical, the second is systematic and the third is due to the external branching fraction of the normalization channel B0K+πB^0\to K^+\pi^-. The combination of the two LHCb measurements of the B0ppˉB^0\to p \bar{p} branching fraction yields B(B0ppˉ)=(1.27±0.13±0.05±0.03)×108{\cal B}(B^0\to p \bar{p}) = \rm (1.27 \pm 0.13 \pm 0.05 \pm 0.03) \times 10^{-8}

    Observation of sizeable ω\omega contribution to χc1(3872)π+πJ/ψ\chi_{c1}(3872) \to \pi^+\pi^- J/\psi decays

    No full text
    Resonant structures in the dipion mass spectrum from χc1(3872)π+πJ/ψ\chi_{c1}(3872)\to\pi^+\pi^- J/\psi decays, produced via B+K+χc1(3872)B^+\to K^+\chi_{c1}(3872) decays, are analyzed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb1^{-1}. A sizeable contribution from the isospin conserving χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi decay is established for the first time, (21.4±2.3±2.0)%(21.4\pm2.3\pm2.0)\%, with a significance of more than 7.1σ7.1\sigma. The amplitude of isospin violating decay, χc1(3872)ρ0J/ψ\chi_{c1}(3872)\to\rho^0 J/\psi, relative to isospin conserving decay, χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi, is properly determined, and it is a factor of six larger than expected for a pure charmonium state.Resonant structures in the dipion mass spectrum from χc1(3872)→π+π-J/ψ decays, produced via B+→K+χc1(3872) decays, are analyzed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9  fb-1. A sizeable contribution from the isospin conserving χc1(3872)→ωJ/ψ decay is established for the first time, (21.4±2.3±2.0)%, with a significance of more than 7.1σ. The amplitude of isospin violating decay, χc1(3872)→ρ0J/ψ, relative to isospin conserving decay, χc1(3872)→ωJ/ψ, is properly determined, and it is a factor of 6 larger than expected for a pure charmonium state.Resonant structures in the dipion mass spectrum from χc1(3872)π+πJ/ψ\chi_{c1}(3872)\to\pi^+\pi^- J/\psi decays, produced via B+K+χc1(3872)B^+\to K^+\chi_{c1}(3872) decays, are analyzed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb1fb^{-1}. A sizeable contribution from the isospin conserving χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi decay is established for the first time, (21.4±2.3±2.0)%(21.4\pm2.3\pm2.0)\%, with a significance of more than 7.1σ7.1\sigma. The amplitude of isospin violating decay, χc1(3872)ρ0J/ψ\chi_{c1}(3872)\to\rho^0 J/\psi, relative to isospin conserving decay, χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi, is properly determined, and it is a factor of six larger than expected for a pure charmonium state

    Nuclear modification factor of neutral pions in the forward and backward regions in ppPb collisions

    No full text
    The nuclear modification factor of neutral pions is measured in proton-lead collisions collected at a center-of-mass energy per nucleon of 8.168.16 TeV with the LHCb detector. The π0\pi^0 production cross section is measured differentially in transverse momentum (pTp_{T}) for 1.5π0 production cross section is measured differentially in transverse momentum (pT) for 1.5<pT<10.0  GeV and in center-of-mass pseudorapidity (ηc.m.) regions 2.5<ηc.m.<3.5 (forward) and -4.0<ηc.m.<-3.0 (backward) defined relative to the proton beam direction. The forward measurement shows a sizable suppression of π0 production, while the backward measurement shows the first evidence of π0 enhancement in proton-lead collisions at the LHC. Together, these measurements provide precise constraints on models of nuclear structure and particle production in high-energy nuclear collisions.The nuclear modification factor of neutral pions is measured in proton-lead collisions collected at a center-of-mass energy per nucleon of 8.16~{\rm TeV}withtheLHCbdetector.The with the LHCb detector. The \pi^0productioncrosssectionismeasureddifferentiallyintransversemomentum( production cross section is measured differentially in transverse momentum (p_{\rm T})for) for 1.5<p_{\rm T}<10.0~{\rm GeV}andincenterofmasspseudorapidity( and in center-of-mass pseudorapidity (\eta_{\rm c.m.})regions) regions 2.5<\eta_{\rm c.m.}<3.5(forward)and (forward) and -4.0<\eta_{\rm c.m.}<-3.0(backward)definedrelativetotheprotonbeamdirection.Theforwardmeasurementshowsasizablesuppressionof (backward) defined relative to the proton beam direction. The forward measurement shows a sizable suppression of \pi^0production,whilethebackwardmeasurementshowsthefirstevidenceof production, while the backward measurement shows the first evidence of \pi^0$ enhancement in proton-lead collisions at the LHC. Together, these measurements provide precise constraints on models of nuclear structure and particle production in high-energy nuclear collisions

    Measurement of CP asymmetries in D(s)+ηπ+ {D}_{(s)}^{+}\to \eta {\pi}^{+} and D(s)+ηπ+ {D}_{(s)}^{+}\to {\eta}^{\prime }{\pi}^{+} decays

    No full text
    Searches for CP violation in the decays D(s)+ηπ+ {D}_{(s)}^{+}\to \eta {\pi}^{+} and D(s)+ηπ+ {D}_{(s)}^{+}\to {\eta}^{\prime }{\pi}^{+} are performed using pp collision data corresponding to 6 fb1^{−1} of integrated luminosity collected by the LHCb experiment. The calibration channels D(s)+ϕπ+ {D}_{(s)}^{+}\to \phi {\pi}^{+} are used to remove production and detection asymmetries. The resulting CP-violating asymmetries areACP=(D+ηπ+)=(0.34±0.66±0.16±0.05)%,ACP=(Ds+ηπ+)=(0.32±0.51±0.12)%,ACP=(D+ηπ+)=(0.49±0.18±0.06±0.05)%,ACP=(Ds+ηπ+)=(0.01±0.12±0.08)%, {\displaystyle \begin{array}{l}{\mathcal{A}}^{CP}=\left({D}^{+}\to \eta {\pi}^{+}\right)=\left(0.34\pm 0.66\pm 0.16\pm 0.05\right)\%,\\ {}{\mathcal{A}}^{CP}=\left({D}_s^{+}\to \eta {\pi}^{+}\right)=\left(0.32\pm 0.51\pm 0.12\right)\%,\\ {}\begin{array}{l}{\mathcal{A}}^{CP}=\left({D}^{+}\to {\eta}^{\prime }{\pi}^{+}\right)=\left(0.49\pm 0.18\pm 0.06\pm 0.05\right)\%,\\ {}{\mathcal{A}}^{CP}=\left({D}_s^{+}\to {\eta}^{\prime }{\pi}^{+}\right)=\left(0.01\pm 0.12\pm 0.08\right)\%,\end{array}\end{array}} where the first uncertainty is statistical, the second is systematic and the third, relevant for the D+^{+} channels, is due to the uncertainty on ACP=(D+ϕπ+) {\mathcal{A}}^{CP}=\left({D}^{+}\to \phi {\pi}^{+}\right) . These measurements, currently the most precise for three of the four channels considered, are consistent with the absence of CP violation. A combination of these results with previous LHCb measurements is presented.[graphic not available: see fulltext]Searches for CPCP violation in the decays D(s)+ηπ+D^+_{(s)}\rightarrow \eta \pi^+ and D(s)+ηπ+D^+_{(s)}\rightarrow \eta^{\prime} \pi^+ are performed using pppp collision data corresponding to 6 fb1^{-1} of integrated luminosity collected by the LHCb experiment. The calibration channels D(s)+ϕπ+D^+_{(s)}\rightarrow \phi \pi^+ are used to remove production and detection asymmetries. The resulting CPCP-violating asymmetries are ACP(D+ηπ+)=(0.34±0.66±0.16±0.05)%A^{CP}(D^+ \rightarrow \eta \pi^+) = (0.34 \pm 0.66 \pm 0.16 \pm 0.05)\%, ACP(Ds+ηπ+)=(0.32±0.51±0.12)%A^{CP}(D^+_s \rightarrow \eta \pi^+) = (0.32 \pm 0.51 \pm 0.12)\%, ACP(D+ηπ+)=(0.49±0.18±0.06±0.05)%A^{CP}(D^+ \rightarrow \eta^{\prime} \pi^+) = (0.49 \pm 0.18 \pm 0.06 \pm 0.05)\%, ACP(Ds+ηπ+)=(0.01±0.12±0.08)%A^{CP}(D^+_s \rightarrow \eta^{\prime} \pi^+) = (0.01 \pm 0.12 \pm 0.08)\%, where the first uncertainty is statistical, the second is systematic and the third, relevant for the D+D^+ channels, is due to the uncertainty on ACP(D+ϕπ+)A^{CP}(D^+ \to \phi \pi^+). These measurements, currently the most precise for three of the four channels considered, are consistent with the absence of CPCP violation. A combination of these results with previous LHCb measurements is presented

    Measurement of the prompt D0D^0 nuclear modification factor in ppPb collisions at sNN=8.16\sqrt{s_\mathrm{NN}} = 8.16 TeV

    No full text
    International audienceThe production of prompt D0D^0 mesons in proton-lead collisions in the forward and backward configurations at a center-of-mass energy per nucleon pair of sNN=8.16 TeV\sqrt{s_\mathrm{NN}} = 8.16~\mathrm{TeV} is measured by the LHCb experiment. The nuclear modification factor of prompt D0D^0 mesons is determined as a function of the transverse momentum pTp_\mathrm{T}, and rapidity in the nucleon-nucleon center-of-mass frame yy^*. In the forward rapidity region, significantly suppressed production with respect to pppp collisions is measured, which provides significant constraints of nuclear parton distributions and hadron production down to the very low Bjorken-xx region of 105\sim 10^{-5}. In the backward rapidity region, a suppression with a significance of 2.0 - 3.8 standard deviations compared to nPDF expectations is found in the kinematic region of pT>6 GeV/cp_\mathrm{T}>6~\mathrm{GeV}/c and 3.25<y<2.5-3.25<y^*<-2.5, corresponding to x0.01x\sim 0.01
    corecore