38 research outputs found

    Role of glutamine synthetase in angiogenesis beyond glutamine synthesis

    Get PDF
    Glutamine synthetase, encoded by the gene GLUL, is an enzyme that converts glutamate and ammonia to glutamine. It is expressed by endothelial cells, but surprisingly shows negligible glutamine-synthesizing activity in these cells at physiological glutamine levels. Here we show in mice that genetic deletion of Glul in endothelial cells impairs vessel sprouting during vascular development, whereas pharmacological blockade of glutamine synthetase suppresses angiogenesis in ocular and inflammatory skin disease while only minimally affecting healthy adult quiescent endothelial cells. This relies on the inhibition of endothelial cell migration but not proliferation. Mechanistically we show that in human umbilical vein endothelial cells GLUL knockdown reduces membrane localization and activation of the GTPase RHOJ while activating other Rho GTPases and Rho kinase, thereby inducing actin stress fibres and impeding endothelial cell motility. Inhibition of Rho kinase rescues the defect in endothelial cell migration that is induced by GLUL knockdown. Notably, glutamine synthetase palmitoylates itself and interacts with RHOJ to sustain RHOJ palmitoylation, membrane localization and activation. These findings reveal that, in addition to the known formation of glutamine, the enzyme glutamine synthetase shows unknown activity in endothelial cell migration during pathological angiogenesis through RHOJ palmitoylation

    Urban hot-tubs: Local urbanization has profound effects on average and extreme temperatures in ponds

    No full text
    © 2018 Elsevier B.V. While urbanization-driven warming (urban heat island effect, UHI) has been extensively studied and demonstrated for air temperature, UHI effects on water temperature of ponds are unknown. We investigated (1) whether the UHI impacts man-made urban ponds and tested whether urban ponds have higher mean, maximum and minimum water temperatures and lower daily water temperature fluctuations than rural ponds, (2) whether this is related to time of the day (day versus night), season, and urbanization scale (3200 versus 50 m radius around the pond), and (3) whether the approximated length of growing season is prolonged in urban ponds. Temperature loggers were placed in 30 ponds in Northern Belgium, spanning a broad range of urbanization. We found strong evidence of urban-driven warming. Mainly local urbanization (50 m radius) drove temperature differences throughout the year and even more so in spring and summer, with mean summer temperatures being up to 3.04 °C higher in urban compared to rural ponds, and maximum summer temperatures on average up to 3.69 °C higher. Strikingly, daily temperature fluctuated around 2 °C more in locally urban ponds compared to rural ponds in summer. Length of the growing season estimates show prolongation with up to 45 days in locally urban compared to rural systems, mainly due to an earlier start. Generally, our results show that UHIs impact water temperature of ponds. This warming can have profound consequences for biota inhabiting these systems, and should therefore be considered in future urban planning to reduce deterioration of these habitats and improve their socio-ecological value.status: publishe

    Tolerance of benthic diatoms from temperate aquatic and terrestrial habitats to experimental desiccation and temperature stress

    No full text
    Soils differ from aquatic sediments in environmental characteristics such as moisture availability and temperature fluctuations, and it is therefore believed that soil-inhabiting diatoms have a broader tolerance range to these stresses than aquatic diatoms. To test this hypothesis, we assessed the survival capacities of vegetative cells of 34 benthic diatom species from terrestrial and aquatic habitats in Belgium when exposed to desiccation and temperature stress. Six different stress conditions were studied: gradual heating up to +30°C and +40°C, abrupt heating to +40°C, freezing. to -20°C and desiccation with and without preconditioning at +30°C. All six conditions resulted in a significantly decreased survival of cells compared to control conditions. Desiccation killed all tested strains, freezing was survived by only three species and abrupt heating was significantly more lethal than gradual heating, suggesting a generally high sensitivity of vegetative diatom cells to these three stress factors. While tolerance to temperature extremes (+40°C and -20°C) was to a large extent species-specific, habitat-specific differences in cell survival were also detected. Only terrestrial species survived freezing, and aquatic diatoms were less tolerant to gradual heating to +40°C, both pointing at a higher tolerance of terrestrial diatoms to temperature extremes. Moreover, in two species with both aquatic and terrestrial isolates, only the terrestrial strains survived +40°C. We conclude that vegetative cells of benthic diatoms (1) are very sensitive to desiccation, freezing and abrupt heating and (2) have a habitat-dependent tolerance to temperature extremes. The consequences of these observations for the dispersal capacities and the subsequent biogeographical patterns of diatoms are discussed

    In vitro selection and characterization of putative probiotics isolated from the gut of Acipenser baerii (Brandt, 1869)

    No full text
    To select and characterize potential probiotic bacteria from the gut microbiota of Siberian sturgeon (Acipenser baerii), 129 strains isolated from the hindgut were screened for antagonistic activity against five fish pathogens. Ten isolates showed antagonism towards three or more pathogens. Nine of these isolates were Gram-positive, belonging to Lactococcus (seven) and Bacillus (two), and a single strain belonging to the Gram-negative Citrobacter. These inhibitory isolates were identified using genetic, phentotypic and biochemical traits, and further characterized by in vitro tests assessing the adhesion and growth in mucus and resistance to gastric and intestinal fluids. The candidate probiotics were determined to be non-pathogenic through an in vivo study. Based on these assays, Lactococcus lactis ssp. lactis STG45 and STG81 showed the broadest inhibitory potential, a high viability in simulated gastrointestinal juice and the highest adhesion capacity to mucus. They were therefore selected as the most promising candidate probiotics. This is the first study screening probiotics among the gut microflora of Siberian sturgeon

    Effects of arabinoxylan-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community

    No full text
    Arabinoxylan-oligosaccharides (AXOS) are a newly discovered class of candidate prebiotics that exert different properties depending on their structure. In this study the effects of two different structures of AXOS, namely AXOS-32-0.30 (average degree of polymerization: 32, average degree of substitution: 0.30) and AXOS-3-0.25, were investigated on growth performance, immune responses, gut microbial fermentation and gut bacterial composition of juvenile Siberian sturgeon (Acipenser baerii). After a two weeks acclimation, fish (25.9 ± 0.9 g) were distributed over 24 aquariums (8 replicates per treatment) and fed a control diet or a diet containing 2% AXOS-32-0.30 or AXOS-3-0.25 for 12 weeks. Growth performance and feed utilization tend to improve in sturgeon fed on diets supplemented with AXOS-32-0.30, however not significant. Survival was high in all groups. Both AXOS preparations significantly enhanced the phagocytic activity of fish macrophages compared to the control group, while the alternative haemolytic complement activity and total serum peroxidase content improved only in the group fed AXOS-32-0.30 (P <0.05). The lysozyme activity was not affected by AXOS addition. Simultaneously, the amount of short-chain fatty acids (SCFAs) was highest in the hind gut of sturgeon fed AXOS-32-0.30. The concentrations of acetate, butyrate and total SCFAs in fish fed AXOS-32-0.30 was significantly higher than in the groups fed the control diet or AXOS-3-0.25. Study of the bacterial community in the sturgeon hindgut using PCR-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that both preparations of AXOS induced changes in the bacterial composition. According to redundancy analysis (RDA), hindgut microbiota of each treatment group clustered apart from one another (P = 0.001). DNA sequencing of the dominant DGGE bands recovered from the different treatments showed that AXOS mainly stimulated the growth of lactic acid bacteria and Clostridium sp., with more pronounced effects of AXOS-32-0.30. It is concluded that AXOS improves sturgeon health through prebiotic action, but the induced effects depend on the specific structure of AXOS. A higher degree of polymerization of AXOS had a stronger beneficial impact in this sturgeon specie

    Effects of dietary arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance, non-specific immunity and gut micrbiota of juvenile Siberian sturgeon (Acipenser baerii)

    No full text
    We investigated the effects of administration of putative endogenous probiotics Lactococcus lactis spp. lactis or Bacillus circulans, alone and in combination with arabinoxylan-oligosaccharides (AXOS), a new class of candidate prebiotics, in juvenile Siberian sturgeon (Acipenser baerii). Eight experimental diets were tested: basal diet (Diet 1), basal diet supplemented with 2% AXOS (Diet 2), or L. lactis ST G81 (Diet 3), L. lactis ST G45 (Diet 4), B. circulans ST M53 (Diet 5), L. lactis ST G81 + 2% AXOS (Diet 6), L. lactis ST G45 + 2% AXOS (Diet 7), B. circulans ST M53 + 2% AXOS (Diet 8). After four weeks, growth performance and feed conversion ratio significantly improved in fish fed diet 7. Innate immune responses of fish were boosted with both AXOS and probiotic diets, however synergistic effects of AXOS and probiotic diets were only observed for phagocytic and alternative complement activity. Phagocytic and respiratory burst activity of fish macrophage increased in fish fed diet 2 and 7, while humoral immune responses only increased in fish fed diet 7. Pyrosequencing analysis (16S rDNA) of the hindgut microbiota demonstrated that AXOS improved the colonization or/and growth capacity of L. lactis, as a higher relative abundance of L. lactis was observed in fish receiving diet 7. However, no observable colonization of B. circulans was found in the hindgut of fish fed diet 5 or 8, containing this bacterium. The dietary L. lactis ST G45 + 2% AXOS caused significant alterations in the intestinal microbiota by significantly decreasing in bacterial diversity, demonstrated by the fall in richness and Shannon diversity, and improved growth performance and boosted immune responses of Siberian sturgeon

    Analysing eco-evolutionary dynamics-The challenging complexity of the real world

    No full text
    The field of eco‐evolutionary dynamics is developing rapidly, with a growing number of well‐designed experiments quantifying the impact of evolution on ecological processes and patterns, ranging from population demography to community composition and ecosystem functioning. The key challenge remains to transfer the insights of these proof‐of‐principle experiments to natural settings, where multiple species interact and the dynamics are far more complex than those studied in most experiments. Here, we discuss potential pitfalls of building a framework on eco‐evolutionary dynamics that is based on data on single species studied in isolation from interspecific interactions, which can lead to both under‐ and overestimation of the impact of evolution on ecological processes. Underestimation of evolution‐driven ecological changes could occur in a single‐species approach when the focal species is involved in co‐evolutionary dynamics, whereas overestimation might occur due to increased rates of evolution following ecological release of the focal species. In order to develop a multi‐species perspective on eco‐evolutionary dynamics, we discuss the need for a broad‐sense definition of “eco‐evolutionary feedbacks” that includes any reciprocal interaction between ecological and evolutionary processes, next to a narrow‐sense definition that refers to interactions that directly feed back on the interactor that evolves. We discuss the challenges and opportunities of using more natural settings in eco‐evolutionary studies by gradually adding complexity: (a) multiple interacting species within a guild, (b) food web interactions and (c) evolving metacommunities in multiple habitat patches in a landscape. A literature survey indicated that only a few studies on microbial systems so far developed a truly multi‐species approach in their analysis of eco‐evolutionary dynamics, and mostly so in artificially constructed communities. Finally, we provide a road map of methods to study eco‐evolutionary dynamics in more natural settings. Eco‐evolutionary studies involving multiple species are necessarily demanding and might require intensive collaboration among research teams, but are highly needed. A plain language summary is available for this article.status: publishe
    corecore