6,732 research outputs found

    Private Graphon Estimation for Sparse Graphs

    Get PDF
    We design algorithms for fitting a high-dimensional statistical model to a large, sparse network without revealing sensitive information of individual members. Given a sparse input graph GG, our algorithms output a node-differentially-private nonparametric block model approximation. By node-differentially-private, we mean that our output hides the insertion or removal of a vertex and all its adjacent edges. If GG is an instance of the network obtained from a generative nonparametric model defined in terms of a graphon WW, our model guarantees consistency, in the sense that as the number of vertices tends to infinity, the output of our algorithm converges to WW in an appropriate version of the L2L_2 norm. In particular, this means we can estimate the sizes of all multi-way cuts in GG. Our results hold as long as WW is bounded, the average degree of GG grows at least like the log of the number of vertices, and the number of blocks goes to infinity at an appropriate rate. We give explicit error bounds in terms of the parameters of the model; in several settings, our bounds improve on or match known nonprivate results.Comment: 36 page

    Exploiting neutron-rich radioactive ion beams to constrain the symmetry energy

    Get PDF
    The Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet were used to measure the free neutrons and heavy charged particles from the radioactive ion beam induced 32Mg + 9Be reaction. The fragmentation reaction was simulated with the Constrained Molecular Dynamics model(CoMD), which demonstrated that the of the heavy fragments and free neutron multiplicities were observables sensitive to the density dependence of the symmetry energy at sub-saturation densities. Through comparison of these simulations with the experimental data constraints on the density dependence of the symmetry energy were extracted. The advantage of radioactive ion beams as a probe of the symmetry energy is demonstrated through examination of CoMD calculations for stable and radioactive beam induced reactions

    Similarity based cooperation and spatial segregation

    Full text link
    We analyze a cooperative game, where the cooperative act is not based on the previous behaviour of the co-player, but on the similarity between the players. This system has been studied in a mean-field description recently [A. Traulsen and H. G. Schuster, Phys. Rev. E 68, 046129 (2003)]. Here, the spatial extension to a two-dimensional lattice is studied, where each player interacts with eight players in a Moore neighborhood. The system shows a strong segregation independent on parameters. The introduction of a local conversion mechanism towards tolerance allows for four-state cycles and the emergence of spiral waves in the spatial game. In the case of asymmetric costs of cooperation a rich variety of complex behavior is observed depending on both cooperation costs. Finally, we study the stabilization of a cooperative fixed point of a forecast rule in the symmetric game, which corresponds to cooperation across segregation borders. This fixed point becomes unstable for high cooperation costs, but can be stabilized by a linear feedback mechanism.Comment: 7 pages, 9 figure

    Spiking Neurons Learning Phase Delays

    Get PDF
    Time differences between the two ears are an important cue for animals to azimuthally locate a sound source. The first binaural brainstem nucleus, in mammals the medial superior olive, is generally believed to perform the necessary computations. Its cells are sensitive to variations of interaural time differences of about 10 μs. The classical explanation of such a neuronal time-difference tuning is based on the physical concept of delay lines. Recent data, however, are inconsistent with a temporal delay and rather favor a phase delay. By means of a biophysical model we show how spike-timing-dependent synaptic learning explains precise interplay of excitation and inhibition and, hence, accounts for a physical realization of a phase delay

    CK2 Inhibitors Increase the Sensitivity of HSV-1 to Interferon-β

    Get PDF
    Herpes simplex virus type 1 (HSV-1) requires the activities of cellular kinases for efficient replication. The host kinase, CK2, has been shown or is predicted to modify several HSV-1 proteins and has been proposed to affect one or more steps in the viral lifecycle. Furthermore, potential cellular and viral substrates of CK2 are involved in antiviral pathways and viral counter-defenses, respectively, suggesting that CK2 regulates these processes. Consequently, we tested whether pharmacological inhibitors of CK2 impaired HSV-1 replication, either alone or in combination with the cellular antiviral factor, interferon-β (IFN-β). Our results indicate that the use of CK2 inhibitors results in a minor reduction in HSV-1 replication but enhanced the inhibitory effect of IFN-β on replication. This effect was dependent on the HSV-1 E3 ubiquitin ligase, infected cell protein 0 (ICP0), which impairs several host antiviral responses, including that produced by IFN-β. Inhibitors of CK2 did not, however, impede the ability of ICP0 to induce the degradation of two cellular targets: the promyelocyticleukemia protein (PML) and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Notably, this effect was only apparent for HSV-1, as the CK2 inhibitors did not enhance the antiviral effect of IFN-β on either vesicular stomatitis virus or adenovirus type 5. Thus, our data suggest that the activity of CK2 is required for an early function during viral infection that assists the growth of HSV-1 in IFN-β-treated cells

    hTERT Extends the Life of Human Fibroblasts without Compromising Type I Interferon Signaling

    Get PDF
    Primary cells are often used to study viral replication and host-virus interactions as their antiviral pathways have not been altered or inactivated; however, their use is restricted by their short lifespan. Conventional methods to extend the life of primary cultures typically utilize viral oncogenes. Many of these oncogenes, however, perturb or inactivate cellular antiviral pathways, including the interferon (IFN) response. It has been previously shown that expression of the telomerase reverse transcriptase (TERT) gene extends the life of certain cell types. The effect that TERT expression has on the innate antiviral response to RNA- and DNA-containing viruses has not been examined. In the current study, we introduced the human TERT (hTERT) gene into a primary human embryonic lung (HEL-299) cell strain, which is known to respond to the type I IFN, IFN-β. We show that the resulting HEL-TERT cell line is capable of replicating beyond 100 population doublings without exhibiting signs of senescence. Treatment with IFN-β resulted in the upregulation of four model IFN stimulated genes (ISGs) in HEL-299 and HEL-TERT cells. Both cell lines supported the replication of herpes simplex virus type 1 (HSV-1) and vesicular stomatitis virus (VSV) and impaired the replication of both viruses upon IFN-β pretreatment. Introduction of the viral oncoprotein, simian virus 40 (SV40) large T-antigen, which is frequently used to immortalize cells, largely negated this effect. Taken together, our data indicate that expression of hTERT does not alter type 1 IFN signaling and/or the growth of two viruses, making this cell line a useful reagent for studying viral replication and virus-cell interactions.This work was supported in part by grants from the National Institute of Allergy and Infectious Diseases (R01AI72357), the National Center for Research Resources (P20RR016475), and the National Institute of General Medical Sciences (P20GM103418) from the National Institutes of Health

    Three-body correlations in the ground-state decay of 26O

    Full text link
    Background: Theoretical calculations have shown that the energy and angular correlations in the three-body decay of the two-neutron unbound O26 can provide information on the ground-state wave function, which has been predicted to have a dineutron configuration and 2n halo structure. Purpose: To use the experimentally measured three-body correlations to gain insight into the properties of O26, including the decay mechanism and ground-state resonance energy. Method: O26 was produced in a one-proton knockout reaction from F27 and the O24+n+n decay products were measured using the MoNA-Sweeper setup. The three-body correlations from the O26 ground-state resonance decay were extracted. The experimental results were compared to Monte Carlo simulations in which the resonance energy and decay mechanism were varied. Results: The measured three-body correlations were well reproduced by the Monte Carlo simulations but were not sensitive to the decay mechanism due to the experimental resolutions. However, the three-body correlations were found to be sensitive to the resonance energy of O26. A 1{\sigma} upper limit of 53 keV was extracted for the ground-state resonance energy of O26. Conclusions: Future attempts to measure the three-body correlations from the ground-state decay of O26 will be very challenging due to the need for a precise measurement of the O24 momentum at the reaction point in the target

    On the ultra-compact nature of 4U1822-000

    Full text link
    We report the discovery of a periodic modulation in the optical lightcurve of the candidate ultra-compact X-ray binary 4U1822-000. Using time-resolved optical photometry taken with the William Herschel Telescope we find evidence for a sinusoidal modulation with a semi-amplitude of 8 percent and a period of 191 min, which is most likely close to the true orbital period of the binary. Using the van Paradijs & McClintock relation for the absolute magnitude and the distance modulus allowing for interstellar reddening, we estimate the distance to 4U1822-000 to be 6.3 kpc. The long orbital period and casts severe doubts on the ultra-compact nature of 4U1822-000.Comment: 3 pages, 1 figure, accepted by MNRA
    • …
    corecore