27,592 research outputs found
Spinodal decomposition: An alternate mechanism of phase conversion
The scenario of homogeneous nucleation is investigated for a first order
quark-hadron phase transition in a rapidly expanding background of quark gluon
plasma. It is found that significant supercooling is possible before
hadronization begins. This study also suggests that spinodal decomposition
competes with nucleation and may provide an alternative mechanism for phase
conversion.Comment: LaTeX, 4 pages with 3 Postscript figures. Talk given at International
Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP 2001),
Nov. 26-30, 2001, Jaipur, Indi
Electron Correlations and Two-Photon States in Polycyclic Aromatic Hydrocarbon Molecules: A Peculiar Role of Geometry
We present numerical studies of one- and two-photon excited states ordering
in a number of polycyclic aromatic hydrocarbon molecules: coronene,
hexa-peri-hexabenzocoronene and circumcoronene, all possessing point
group symmetry versus ovalene with symmetry, within the
Pariser-Parr-Pople model of interacting -electrons. The calculated
energies of the two-photon states as well as their relative two-photon
absorption cross-sections within the interacting model are qualitatively
different from single-particle descriptions. More remarkably, a peculiar role
of molecular geometry is found. The consequence of electron correlations is far
stronger for ovalene, where the lowest spin-singlet two-photon state is a
quantum superposition of pairs of lowest spin triplet states, as in the linear
polyenes. The same is not true for group hydrocarbons. Our work
indicates significant covalent character, in valence bond language, of the
ground state, the lowest spin triplet state and a few of the lowest two-photon
states in ovalene but not in those with symmetry.Comment: 11 pages, 3 figures, 3 table
Risk factors for acute exacerbations of COPD in a primary care population: A retrospective observational cohort study
Objectives: To evaluate risk factors associated with exacerbation frequency in primary care. Information on exacerbations of chronic obstructive pulmonary disease (COPD) has mainly been generated by secondary care-based clinical cohorts. Design: Retrospective observational cohort study. Setting: Electronic medical records database (England and Wales). Participants: 58 589 patients with COPD aged ≥40 years with COPD diagnosis recorded between 1 April 2009 and 30 September 2012, and with at least 365 days of follow-up before and after the COPD diagnosis, were identified in the Clinical Practice Research Datalink. Mean age: 69 years; 47% female; mean forced expiratory volume in 1s 60% predicted. Outcome measures: Data on moderate or severe exacerbation episodes defined by diagnosis and/or medication codes 12 months following cohort entry were retrieved, together with demographic and clinical characteristics. Associations between patient characteristics and odds of having none versus one, none versus frequent (≥2) and one versus frequent exacerbations over 12 months follow-up were evaluated using multivariate logistic regression models. Results: During follow-up, 23% of patients had evidence of frequent moderate-to-severe COPD exacerbations (24% one; 53% none). Independent predictors of increased odds of having exacerbations during the follow-up, either frequent episodes or one episode, included prior exacerbations, increasing dyspnoea score, increasing grade of airflow limitation, females and prior or current history of several comorbidities (eg, asthma, depression, anxiety, heart failure and cancer). Conclusions: Primary care-managed patients with COPD at the highest risk of exacerbations can be identified by exploring medical history for the presence of prior exacerbations, greater COPD disease severity and co-occurrence of other medical conditions
Nonlinear wave-wave interactions in quantum plasmas
Wave-wave interaction in plasmas is a topic of important research since the
16th century. The formation of Langmuir solitons through the coupling of
high-frequency (hf) Langmuir and low-frequency (lf) ion-acoustic waves, is one
of the most interesting features in the context of turbulence in modern plasma
physics. Moreover, quantum plasmas, which are ubiquitous in ultrasmall
electronic devices, micromechanical systems as well as in dense astrophysical
environments are a topic of current research. In the light of notable interests
in such quantum plasmas, we present here a theoretical investigation on the
nonlinear interaction of quantum Langmuir waves (QLWs) and quantum ion-acoustic
waves (QIAWs), which are governed by the one-dimensional quantum Zakharov
equations (QZEs). It is shown that a transition to spatiotemporal chaos (STC)
occurs when the length scale of excitation of linear modes is larger than that
of the most unstable ones. Such length scale is, however, to be larger
(compared to the classical one) in presence of the quantum tunneling effect.
The latter induces strong QIAW emission leading to the occurrence of collision
and fusion among the patterns at an earlier time than the classical case.
Moreover, numerical simulation of the QZEs reveals that many solitary patterns
can be excited and saturated through the modulational instability (MI) of
unstable harmonic modes. In a longer time, these solitons are seen to appear in
the state of STC due to strong QIAW emission as well as by the collision and
fusion in stochastic motion. The energy in the system is thus strongly
redistributed, which may switch on the onset of Langmuir turbulence in quantum
plasmas.Comment: 6 pages, 6 figures (To appear in AIP Conf. Proceedings 2010
Nilpotent Symmetries of a 4D Model of the Hodge Theory: Augmented (Anti-)Chiral Superfield Formalism
We derive the continuous nilpotent symmetries of the four (3 + 1)-dimensional
(4D) model of the Hodge theory (i.e. 4D Abelian 2-form gauge theory) by
exploiting the beauty and strength of the symmetry invariant restrictions on
the (anti-)chiral superfields. The above off-shell nilpotent symmetries are the
Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST and (anti-)co-BRST transformations
which turn up beautifully due to the (anti-)BRST and (anti-)co-BRST invariant
restrictions on the (anti-)chiral superfields that are defined on the (4,
1)-dimensional (anti-)chiral super-submanifolds of the general (4,
2)-dimensional supermanifold on which our ordinary 4D theory is generalized.
The latter supermanifold is characterized by the superspace coordinates where are the
bosonic coordinates and a pair of Grassmannian variables and
are fermionic in nature as they obey the standard relationships:
). The derivation of the {\it proper} (anti-)co-BRST symmetries and proof of
the absolute anticommutativity property of the conserved (anti-)BRST and
(anti-) co-BRST charges are novel results of our present investigation (where
only the (anti-)chiral superfields and their super-expansions have been taken
into account).Comment: LaTeX file, 28 pages, journal reference is give
- …
