29 research outputs found
Mechanism of O influence on the decomposition process of the eco-friendly gas insulating medium CFN/CO
The CFN/CO/O gas mixture is the most promising eco-friendly
gas insulation medium available. However, there are few studies on the
mechanism of the influence of the buffer gas O2 ratio and its role in the
decomposition characteristics of C4F7N/CO2. In this paper, based on the ReaxFF
reaction molecular dynamics method and density functional theory, a simulation
of the thermal decomposition process of the CFN/CO mixture under
different O2 ratios was carried out at temperatures in the range 2000-3000 K. A
constructed model of the C4F7N/CO2/O2 mixture reaction system was used that
included the possible reaction paths, product distribution characteristics and
their generation rates. The calculation results show that the thermal
decomposition of CFN/CO/O mainly generates species such as
CF, CF, CF, F, CF, CF, CF, CF,
CFN, CFN, CFN, CN, CO, O, and C. Among them, the two particles
CF and CN are the most abundant. The first decomposition time of
CFN is advanced by the addition of O, while the amount of
CFN decomposed and the generation of major decomposed particles
decreases. The addition of 0%-4% of O decreases the reaction rate of the
main decomposition reaction in the reaction system. Quantum chemical
calculations show that the dissociation process occurring from the combination
of CFN with O atom is more likely to occur compared to the direct
dissociation process of CFN molecules. The conclusions of this study
provide a theoretical basis for the optimization of the application ratio of
CFN/CO/O and the diagnosis of its equipment operation and
maintenance.Comment: IEEE Transactions on Dielectrics and Electrical Insulation, In pres
Municipal sewage sludge compost promotes Mangifera persiciforma tree growth with no risk of heavy metal contamination of soil
Application of sewage sludge compost (SSC) as a fertilizer on landscaping provides a potential way for the effective disposal of sludge. However, the response of landscape trees to SSC application and the impacts of heavy metals from SSC on soil are poorly understood. We conducted a pot experiment to investigate the effects of SSC addition on Mangifera persiciforma growth and quantified its uptake of heavy metals from SSC by setting five treatments with mass ratios of SSC to lateritic soil as 0%:100% (CK), 15%:85% (S15), 30%:70% (S30), 60%:40% (S60), and 100%:0% (S100). As expected, the fertility and heavy metal concentrations (Cu, Zn, Pb and Cd) in substrate significantly increased with SSC addition. The best performance in terms of plant height, ground diameter, biomass and N, P, K uptake were found i n S30, implying a reasonable amount of SSC could benefit the growth of M. persiciforma. The concentrations of Cu, Pb and Cd in S30 were insignificantly different from CK after harvest, indicating that M. persiciforma reduced the risk of heavy metal contamination of soil arising from SSC application. This study suggests that a reasonable rate of SSC addition can enhance M. persiciforma growth without causing the contamination of landscaping soil by heavy metals
Recommended from our members
Functional variant of the carboxypeptidase M (CPM) gene may affect silica-related pneumoconiosis susceptibility by its expression: a multistage case-control study.
ObjectivesIn a genome-wide association study, we discovered chromosome 12q15 (defined as rs73329476) as a silica-related pneumoconiosis susceptibility region. However, the causal variants in this region have not yet been reported.MethodsWe systematically screened eight potentially functional single-neucleotide polymorphism (SNPs) in the genes near rs73329476 (carboxypeptidase M (CPM) and cleavage and polyadenylation specific factor 6 (CPSF6)) in a case-control study including 177 cases with silicosis and 204 healthy controls, matched to cases with years of silica dust exposure. We evaluated the associations between these eight SNPs and the development of silicosis. Luciferase reporter gene assays were performed to test the effects of selected SNP on the activity of CPM in the promoter. In addition, a two-stage case-control study was performed to investigate the expression differences of the two genes in peripheral blood leucocytes from a total of 64 cases with silicosis and 64 healthy controls with similar years of silica dust exposure as the cases.ResultsWe found a strong association between the mutant rs12812500 G allele and the susceptibility of silicosis (OR=1.45, 95% CI 1.03 to 2.04, p=0.034), while luciferase reporter gene assays indicated that the mutant G allele of rs12812500 is strongly associated with increased luciferase levels compared with the wild-type C allele (p<0.01). Moreover, the mRNA (peripheral blood leucocytes) expression of the CPM gene was significantly higher in subjects with silicosis compared with healthy controls.ConclusionsThe rs12812500 variant of the CPM gene may increase silicosis susceptibility by affecting the expression of CPM, which may contribute to silicosis susceptibility with biological plausibility
Cerebrospinal fluid oligoclonal bands in Chinese patients with multiple sclerosis: the prevalence and its association with clinical features
BackgroundCerebrospinal fluid oligoclonal band (CSF-OCB) is an established biomarker in diagnosing multiple sclerosis (MS), however, there are no nationwide data on CSF-OCB prevalence and its diagnostic performance in Chinese MS patients, especially in the virtue of common standard operation procedure (SOP).MethodsWith a consensus SOP and the same isoelectric focusing system, we conducted a nationwide multi-center study on OCB status in consecutively, and recruited 483 MS patients and 880 non-MS patients, including neuro-inflammatory diseases (NID, n = 595) and non-inflammatory neurological diseases (NIND, n=285). Using a standardized case report form (CRF) to collect the clinical, radiological, immunological, and CSF data, we explored the association of CSF-OCB positivity with patient characters and the diagnostic performance of CSF-OCB in Chinese MS patients. Prospective source data collection, and retrospective data acquisition and statistical data analysis were used.Findings369 (76.4%) MS patients were OCB-positive, while 109 NID patients (18.3%) and 6 NIND patients (2.1%) were OCB-positive, respectively. Time from symptom onset to diagnosis was significantly shorter in OCB-positive than that in OCB-negative MS patients (13.2 vs 23.7 months, P=0.020). The prevalence of CSF-OCB in Chinese MS patients was significantly higher in high-latitude regions (41°-50°N)(P=0.016), and at high altitudes (>1000m)(P=0.025). The diagnostic performance of CSF-OCB differentiating MS from non-MS patients yielded a sensitivity of 76%, a specificity of 87%.InterpretationThe nationwide prevalence of CSF-OCB was 76.4% in Chinese MS patients, and demonstrated a good diagnostic performance in differentiating MS from other CNS diseases. The CSF-OCB prevalence showed a correlation with high latitude and altitude in Chinese MS patients
Biochar Application Improved Sludge-Amended Landscape Soil Fertility Index but with No Added Benefit in Plant Growth
Co-application of sewage sludge (SS) with biochar in landscape/forestry soil is a common strategy for enhancing soil fertility and reducing the bioavailability of potential toxic elements (PTEs) derived from SS, such as Cd, Pb, Cu, Zn, and Ni. However, due to variability of biochar quality and uncertainties in responses of different plant species, whether the co-application benefits the landscape/forestry plant system remains elusive. Here, we tested the effectiveness of three types of biochar (SS-derived biochar (SB), rice straw-derived biochar (RB), and litter-derived biochar (LB)), which were added to soil amended with SS at 50% (w/w) at rates of 1.5%, 3%, and 4.5% as growth media for the landscape plant Aglaonema modestum (A. modestum). We analyzed the substrateâs physicochemical properties and assessed the alleviation of phytotoxicity by biochar application. A significant increase in the fertility index of substrate was observed in all the treatments with biochar addition. The addition of biochar reduced the potential mobility of PTEs while increasing their residual fraction in media. Nonetheless, it has been found that the addition of biochar has ineffective or even negative effects on A. modestum growth (height, biomass, root length) and nutrient absorption. Importantly, the reduction in root biomass and the increased activity of root antioxidant enzymes (SOD, POD, CAT, and MDA) indicate contamination stress of biochar on the roots of A. modestum. Toxic elements of concernânamely Cu, Cd, and Pbâwere not significantly higher in tissues of A. modestum saplings planted in biochar-SS-amended soil. However, elevated levels of other elements that may pose toxicity concerns, such as Ni and Zn, increased in tissues at high biochar dosages. Based on the EntropyâWeight TOPSIS method, it was further confirmed that compared to the treatment without biochar, all treatments except for 3.0% LB application resulted in poorer A. modestum comprehensive growth. Our results emphasize the need for detailed research on the response of specific plants to biochar in specific environments, including plant adaptability and the unexplored toxicity of biochar, to understand the large variations and mechanisms behind these ineffective or negative effects before the large-scale co-utilization of SS and biochar in landscape/forestry soils
Preparation and representation of recombinant Mn-ferritin flower-like spherical aggregates from marine invertebrates.
Ferritin has important functions in the transition and storage of toxic metal ions, but its regulation and function in many invertebrate species are still largely unknown. In our previous work, the cDNA sequence of Sinonovacula constricta, Apostichopus japonicas and Acaudina leucoprocta were constructed and efficiently expressed in E. Coli BL21 under IPTG induction. In this follow-up study, the recombinant ferritins were exposed to heavy metal manganese. The manganese concentration levels in three recombinant ferritins were greater than horse spleen ferritin (HSF). Compared with HSF, the amount of manganese enrichment in the three recombinant ferritins was 1.75-fold, 3.25-fold and 2.42-fold increases in ScFER, AjFER, and AlFER, respectively. After phosphate stimulation, the concentration of manganese increased and was higher than the ordinary dialysis control groups. The ScFER was four times its baseline value. The AjFER and AlFER were 1.4- and 8-fold higher, respectively. The AlFER sample stimulated by phosphate was 22-fold that of HSF. The morphologies of the resulting Mn-Ferritin from different marine invertebrates were characterized with scanning electron microscopy. Surface morphologies were lamella flower-like and are consistent with changes in surface morphologies of the standard Mn-HSF. Invertebrate recombinant ferritin and HSF both can uptake manganese. We found that the structure of A. leucoproctarecombinant Mn-Ferritin aggregate changed over time. The surface formed lamella flower-like aggregate, but gradually merged to create a relatively uniform plate-like phase of aggregate spherically and fused without clear boundaries
Oxygen therapy in patients with retinal artery occlusion: A meta-analysis.
BACKGROUND:Oxygen therapy has been widely used for RAO (retinal artery occlusion) patients; however, inconsistent results have been reported. METHODS:PubMed, Web of Science, EMBASE, Medline (OvidSP), Cochrane, China National Knowledge Infrastructure (CNKI), and Wanfang Database were examined. The primary endpoint was visual acuity (VA), and RevMan software 5.3 was used to statistically analyze the outcomes. RESULTS:Seven randomized controlled trials (RCTs) met the inclusion criteria. Patients who received oxygen therapy exhibited probability of visual improvement about 5.61 times compared with the control group who did not receive oxygen therapy (OR = 5.61; 95% CI, 3.60-8.73; p < 0.01). No statistically significant difference was observed between oxygen inhalation methods (Chi2 = 0.18, df = 1, p = 0.67), combined therapy (Chi2 = 0.21, df = 1, p = 0.64), or RAO type (Chi2 = 0.06, df = 1, p = 0.81). Conversely, 100% oxygen (Chi2 = 4.55, df = 1, p < 0.05) and hyperbaric oxygen (Chi2 = 4.55, df = 1, p < 0.05) significantly improved VA in RAO patients. Better effect was showed in period within 3 months (Chi2 = 5.76, df = 1, p < 0.05). The most effective treatment length was over 9 hours (Chi2 = 6.58, df = 1, p < 0.05). CONCLUSION:Oxygen therapy demonstrated beneficial effects in improving VA in RAO patients, particularly when patients were treated with 100% hyperbaric oxygen and for over 9 hours