5 research outputs found

    Collective suppression of optical hyperfine pumping in dense clouds of atoms in microtraps

    Get PDF
    We observe a density-dependent collective suppression of optical pumping between the hyperfine ground states in an array of submicrometer-sized clouds of dense and cold rubidium atoms. The suppressed Raman transition rate can be explained by strong resonant dipole-dipole interactions that are enhanced by increasing atom density, and are already significant at densities of ﰀ0.1k3, where k denotes the resonance wave number. The observations are consistent with stochastic electrodynamics simulations that incorporate the effects of population transfer via internal atomic levels embedded in a coupled-dipole model

    Using a quantum work meter to test non-equilibrium fluctuation theorems

    Get PDF
    Defining and measuring work and heat are non-trivial tasks in the quantum regime. Here, the authors design a scheme to directly sample from the work probability distribution, and use it to verify the validity of the quantum version of the Jarzynksi identity using cold atoms on an atomic chip
    corecore