4,763 research outputs found

    Evolution of replication efficiency following infection with a molecularly cloned feline immunodeficiency virus of low virulence

    Get PDF
    The development of an effective vaccine against human immunodeficiency virus is considered to be the most practicable means of controlling the advancing global AIDS epidemic. Studies with the domestic cat have demonstrated that vaccinal immunity to infection can be induced against feline immunodeficiency virus (FIV); however, protection is largely restricted to laboratory strains of FIV and does not extend to primary strains of the virus. We compared the pathogenicity of two prototypic vaccine challenge strains of FIV derived from molecular clones; the laboratory strain PET<sub>F14</sub> and the primary strain GL8<sub>414</sub>. PET<sub>F14</sub> established a low viral load and had no effect on CD4<sup>+</sup>- or CD8<sup>+</sup>- lymphocyte subsets. In contrast, GL8<sub>414</sub> established a high viral load and induced a significant reduction in the ratio of CD4<sup>+</sup> to CD8<sup>+</sup> lymphocytes by 15 weeks postinfection, suggesting that PET<sub>F14</sub> may be a low-virulence-challenge virus. However, during long-term monitoring of the PET<sub>F14</sub>-infected cats, we observed the emergence of variant viruses in two of three cats. Concomitant with the appearance of the variant viruses, designated 627<sub>W135</sub> and 628<sub>W135</sub>, we observed an expansion of CD8<sup>+</sup>-lymphocyte subpopulations expressing reduced CD8 ß-chain, a phenotype consistent with activation. The variant viruses both carried mutations that reduced the net charge of the V3 loop (K409Q and K409E), giving rise to a reduced ability of the Env proteins to both induce fusion and to establish productive infection in CXCR4-expressing cells. Further, following subsequent challenge of naïve cats with the mutant viruses, the viruses established higher viral loads and induced more marked alterations in CD8<sup>+</sup>-lymphocyte subpopulations than did the parent F14 strain of virus, suggesting that the E409K mutation in the PET<sub>F14</sub> strain contributes to the attenuation of the virus

    Strongly spin-orbit coupled two-dimensional electron gas emerging near the surface of polar semiconductors

    Full text link
    We investigate the two-dimensional (2D) highly spin-polarized electron accumulation layers commonly appearing near the surface of n-type polar semiconductors BiTeX (X = I, Br, and Cl) by angular-resolved photoemission spectroscopy. Due to the polarity and the strong spin-orbit interaction built in the bulk atomic configurations, the quantized conduction-band subbands show giant Rashba-type spin-splitting. The characteristic 2D confinement effect is clearly observed also in the valence-bands down to the binding energy of 4 eV. The X-dependent Rashba spin-orbit coupling is directly estimated from the observed spin-split subbands, which roughly scales with the inverse of the band-gap size in BiTeX.Comment: 15 pages 4 figure

    Orbital-dependent modifications of electronic structure across magneto-structural transition in BaFe2As2

    Full text link
    Laser angle-resolved photoemission spectroscopy (ARPES) is employed to investigate the temperature (T) dependence of the electronic structure in BaFe2As2 across the magneto-structural transition at TN ~ 140 K. A drastic transformation in Fermi surface (FS) shape across TN is observed, as expected by first-principles band calculations. Polarization-dependent ARPES and band calculations consistently indicate that the observed FSs at kz ~ pi in the low-T antiferromagnetic (AF) state are dominated by the Fe3dzx orbital, leading to the two-fold electronic structure. These results indicate that magneto-structural transition in BaFe2As2 accompanies orbital-dependent modifications in the electronic structure.Comment: 13 pages, 4 figures. accepted by Physical Review Letter

    Doping-dependence of nodal quasiparticle properties in high-TcT_{\rm c} cuprates studied by laser-excited angle-resolved photoemission spectroscopy

    Full text link
    We investigate the doping dependent low energy, low temperature (TT = 5 K) properties of nodal quasiparticles in the d-wave superconductor Bi2.1_{2.1}Sr1.9_{1.9}CaCu2_2O8+δ_{8+\delta} (Bi2212). By utilizing ultrahigh resolution laser-excited angle-resolved photoemission spectroscopy, we obtain precise band dispersions near EFE_{F}, mean free paths and scattering rates (Γ\Gamma) of quasiparticles. For optimally and overdoped, we obtain very sharp quasiparticle peaks of 8 meV and 6 meV full-width at half-maximum, respectively, in accord with terahertz conductivity. For all doping levels, we find the energy-dependence of Γω\Gamma \sim |\omega |, while Γ\Gamma(ω=0\omega =0) shows a monotonic increase from overdoping to underdoping. The doping dependence suggests the role of electronic inhomogeneity on the nodal quasiparticle scattering at low temperature (5 K \lsim 0.07T_{\rm c}), pronounced in the underdoped region

    A Possible Phase Transition in beta-pyrochlore Compounds

    Full text link
    We investigate a lattice of interacting anharmonic oscillators by using a mean field theory and exact diagonalization. We construct an effective five-state hopping model with intersite repulsions as a model for beta-pyrochlore AOs_2O_6(A=K, Rb or Cs). We obtain the first order phase transition line from large to small oscillation amplitude phases as temperature decreases. We also discuss the possibility of a phase with local electric polarizations. Our theory can explain the origin of the mysterious first order transition in KOs_2O_6.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Magnetism and Charge Dynamics in Iron Pnictides

    Full text link
    In a wide variety of materials, such as copper oxides, heavy fermions, organic salts, and the recently discovered iron pnictides, superconductivity is found in close proximity to a magnetically ordered state. The character of the proximate magnetic phase is thus believed to be crucial for understanding the differences between the various families of unconventional superconductors and the mechanism of superconductivity. Unlike the AFM order in cuprates, the nature of the magnetism and of the underlying electronic state in the iron pnictide superconductors is not well understood. Neither density functional theory nor models based on atomic physics and superexchange, account for the small size of the magnetic moment. Many low energy probes such as transport, STM and ARPES measured strong anisotropy of the electronic states akin to the nematic order in a liquid crystal, but there is no consensus on its physical origin, and a three dimensional picture of electronic states and its relations to the optical conductivity in the magnetic state is lacking. Using a first principles approach, we obtained the experimentally observed magnetic moment, optical conductivity, and the anisotropy of the electronic states. The theory connects ARPES, which measures one particle electronic states, optical spectroscopy, probing the particle hole excitations of the solid and neutron scattering which measures the magnetic moment. We predict a manifestation of the anisotropy in the optical conductivity, and we show that the magnetic phase arises from the paramagnetic phase by a large gain of the Hund's rule coupling energy and a smaller loss of kinetic energy, indicating that iron pnictides represent a new class of compounds where the nature of magnetism is intermediate between the spin density wave of almost independent particles, and the antiferromagnetic state of local moments.Comment: 4+ pages with additional one-page supplementary materia

    Three-dimensional bulk band dispersion in polar BiTeI with giant Rashba-type spin splitting

    Full text link
    In layered polar semiconductor BiTeI, giant Rashba-type spin-split band dispersions show up due to the crystal structure asymmetry and the strong spin-orbit interaction. Here we investigate the 3-dimensional (3D) bulk band structures of BiTeI using the bulk-sensitive hνh\nu-dependent soft x-ray angle resolved photoemission spectroscopy (SX-ARPES). The obtained band structure is shown to be well reproducible by the first-principles calculations, with huge spin splittings of 300{\sim}300 meV at the conduction-band-minimum and valence-band-maximum located in the kz=π/ck_z=\pi/c plane. It provides the first direct experimental evidence of the 3D Rashba-type spin splitting in a bulk compound.Comment: 9 pages, 4 figure

    "Pudding mold" band drives large thermopower in Nax_xCoO2_2

    Full text link
    In the present study, we pin down the origin of the coexistence of the large thermopower and the large conductivity in Nax_xCoO2_2. It is revealed that not just the density of states (DOS), the effective mass, nor the band width, but the peculiar {\it shape} of the a1ga_{1g} band referred to as the "pudding mold" type, which consists of a dispersive portion and a somewhat flat portion, is playing an important role in this phenomenon. The present study provides a new guiding principle for designing good thermoelectric materials.Comment: 5 page

    Fermi-surface reconstruction involving two Van Hove singularities across the antiferromagnetic transition in BaFe2As2

    Full text link
    We report an angle-resolved photoemission study of BaFe2As2, a parent compound of iron-based superconductors. Low-energy tunable excitation photons have allowed the first observation of a saddle-point singularity at the Z point, as well as the Gamma point. With antiferromagnetic ordering, both of these two van Hove singularities come down below the Fermi energy, leading to a topological change in the innermost Fermi surface around the kz axis from cylindrical to tear-shaped, as expected from first-principles calculation. These singularities may provide an additional instability for the Fermi surface of the superconductors derived from BaFe2As2.Comment: 14 pages, 4 figures, 1 tabl
    corecore