7,931 research outputs found
Applications of Partially Quenched Chiral Perturbation Theory
Partially quenched theories are theories in which the valence- and sea-quark
masses are different. In this paper we calculate the nonanalytic one-loop
corrections of some physical quantities: the chiral condensate, weak decay
constants, Goldstone boson masses, B_K and the K+ to pi+ pi0 decay amplitude,
using partially quenched chiral perturbation theory. Our results for weak decay
constants and masses agree with, and generalize, results of previous work by
Sharpe. We compare B_K and the K+ decay amplitude with their real-world values
in some examples. For the latter quantity, two other systematic effects that
plague lattice computations, namely, finite-volume effects and unphysical
values of the quark masses and pion external momenta are also considered. We
find that typical one-loop corrections can be substantial.Comment: 22 pages, TeX, refs. added, minor other changes, version to appear in
Phys. Rev.
Heavy-Meson Observables at One-Loop in Partially Quenched Chiral Perturbation Theory
I present one-loop level calculations of the Isgur-Wise functions for B ->
D^{(*)} + e + nu, of the matrix elements of isovector twist-2 operators in B
and D mesons, and the matrix elements for the radiative decays D^* -> D + gamma
in partially quenched heavy quark chiral perturbation theory. Such expressions
are required in order to extrapolate from the light quark masses used in
lattice simulations of the foreseeable future to those of nature.Comment: 13 pages, 3 fig
Unconditionally secure one-way quantum key distribution using decoy pulses
We report here a complete experimental realization of one-way decoy-pulse
quantum key distribution, demonstrating an unconditionally secure key rate of
5.51 kbps for a 25.3 km fibre length. This is two orders of magnitudes higher
than the value that can be obtained with a non-decoy system. We introduce also
a simple test for detecting the photon number splitting attack and highlight
that it is essential for the security of the technique to fully characterize
the source and detectors used.Comment: 10 pages, 5 figure
Chiral Perturbation Theory for the Quenched Approximation of QCD
[This version is a minor revision of a previously submitted preprint. Only
references have been changed.] We describe a technique for constructing the
effective chiral theory for quenched QCD. The effective theory which results is
a lagrangian one, with a graded symmetry group which mixes Goldstone bosons and
fermions, and with a definite (though slightly peculiar) set of Feynman rules.
The straightforward application of these rules gives automatic cancellation of
diagrams which would arise from virtual quark loops. The techniques are used to
calculate chiral logarithms in , , , and the ratio of
to . The leading
finite-volume corrections to these quantities are also computed. Problems for
future study are described.Comment: 14 page
Physical Results from Unphysical Simulations
We calculate various properties of pseudoscalar mesons in partially quenched
QCD using chiral perturbation theory through next-to-leading order. Our results
can be used to extrapolate to QCD from partially quenched simulations, as long
as the latter use three light dynamical quarks. In other words, one can use
unphysical simulations to extract physical quantities - in this case the quark
masses, meson decay constants, and the Gasser-Leutwyler parameters L_4-L_8. Our
proposal for determining L_7 makes explicit use of an unphysical (yet
measurable) effect of partially quenched theories, namely the double-pole that
appears in certain two-point correlation functions. Most of our calculations
are done for sea quarks having up to three different masses, except for our
result for L_7, which is derived for degenerate sea quarks.Comment: 26 pages, 12 figures (discussion on discretization errors at end of
sec. IV clarified; minor improvements in presentation; results unchanged
High speed single photon detection in the near-infrared
InGaAs avalanche photodiodes (APDs) are convenient for single photon
detection in the near-infrared (NIR) including the fibre communication bands
(1.31/1.55 m). However, to suppress afterpulse noise due to trapped
avalanche charge, they must be gated with MHz repetition frequencies, thereby
severely limiting the count rate in NIR applications. Here we show gating
frequencies for InGaAs-APDs well beyond 1 GHz. Using a self-differencing
technique to sense much weaker avalanches, we reduce drastically afterpulse
noise. At 1.25 GHz, we obtain a detection efficiency of 10.8% with an
afterpulse probability of 6.16%. In addition, the detector features low jitter
(55 ps) and a count rate of 100 MHz
Gigacount/second photon detection with InGaAs avalanche photodiodes
We demonstrate high count rate single photon detection at telecom wavelengths
using a thermoelectrically-cooled semiconductor diode. Our device consists of a
single InGaAs avalanche photodiode driven by a 2 GHz gating frequency signal
and coupled to a tuneable self-differencing circuit for enhanced detection
sensitivity. We find the count rate is linear with the photon flux in the
single photon detection regime over approximately four orders of magnitude, and
saturates at 1 gigacount/s at high photon fluxes. This result highlights
promising potential for APDs in high bit rate quantum information applications.Comment: Electronics Letters (2012
On Lattice Computations of K+ --> pi+ pi0 Decay at m_K =2m_pi
We use one-loop chiral perturbation theory to compare potential lattice
computations of the K+ --> pi+ pi0 decay amplitude at m_K=2m_pi with the
experimental value. We find that the combined one-loop effect due to this
unphysical pion to kaon mass ratio and typical finite volume effects is still
of order minus 20-30%, and appears to dominate the effects from quenching.Comment: 4 pages, revte
Linear stability of planar premixed flames: reactive Navier-Stokes equations with finite activation energy and arbitrary Lewis number
A numerical shooting method for performing linear stability analyses of travelling waves is described and applied to the problem of freely propagating planar premixed flames. Previous linear stability analyses of premixed flames either employ high activation temperature asymptotics or have been performed numerically with finite activation temperature, but either for unit Lewis numbers (which ignores thermal-diffusive effects) or in the limit of small heat release (which ignores hydrodynamic effects). In this paper the full reactive Navier-Stokes equations are used with arbitrary values of the parameters (activation temperature, Lewis number, heat of reaction, Prandtl number), for which both thermal-diffusive and hydrodynamic effects on the instability, and their interactions, are taken into account. Comparisons are made with previous asymptotic and numerical results. For Lewis numbers very close to or above unity, for which hydrodynamic effects caused by thermal expansion are the dominant destablizing mechanism, it is shown that slowly varying flame analyses give qualitatively good but quantitatively poor predictions, and also that the stability is insensitive to the activation temperature. However, for Lewis numbers sufficiently below unity for which thermal-diffusive effects play a major role, the stability of the flame becomes very sensitive to the activation temperature. Indeed, unphysically high activation temperatures are required for the high activation temperature analysis to give quantitatively good predictions at such low Lewis numbers. It is also shown that state-insensitive viscosity has a small destabilizing effect on the cellular instability at low Lewis numbers
Radiative, actively cooled panel tests results
The radiative, actively cooled panel designed to withstand a uniform incident heat flux of 136 kW/sq m to a 444 K surface temperature was evaluated. The test program consisted of preliminary static thermal mechanical loading and aerothermal flow tests. Test results are briefly discussed
- …
