30 research outputs found

    Origin of the Universal Roughness Exponent of Brittle Fracture Surfaces: Correlated Percolation in the Damage Zone

    Full text link
    We suggest that the observed large-scale universal roughness of brittle fracture surfaces is due to the fracture process being a correlated percolation process in a self-generated quadratic damage gradient. We use the quasi-static two-dimensional fuse model as a paradigm of a fracture model. We measure for this model, that exhibits a correlated percolation process, the correlation length exponent nu approximately equal to 1.35 and conjecture it to be equal to that of uncorrelated percolation, 4/3. We then show that the roughness exponent in the fuse model is zeta = 2 nu/(1+2 nu)= 8/11. This is in accordance with the numerical value zeta=0.75. As for three-dimensional brittle fractures, a mean-field theory gives nu=2, leading to zeta=4/5 in full accordance with the universally observed value zeta =0.80.Comment: 4 pages RevTeX

    Distinguishing fractional and white noise in one and two dimensions

    Full text link
    We discuss the link between uncorrelated noise and Hurst exponent for one and two-dimensional interfaces. We show that long range correlations cannot be observed using one-dimensional cuts through two-dimensional self-affine surfaces whose height distributions are characterized by a Hurst exponent lower than -1/2. In this domain, fractional and white noise are not distinguishable. A method analysing the correlations in two dimensions is necessary. For Hurst exponents larger than -1/2, a crossover regime leads to a systematic over estimate of the Hurst exponent.Comment: 3 pages RevTeX, 4 Postscript figure

    Roughness of Interfacial Crack Front: Correlated Percolation in the Damage Zone

    Full text link
    We show that the roughness exponent zeta of an in-plane crack front slowly propagating along a heterogeneous interface embeded in a elastic body, is in full agreement with a correlated percolation problem in a linear gradient. We obtain zeta=nu/(1+nu) where nu is the correlation length critical exponent. We develop an elastic brittle model based on both the 3D Green function in an elastic half-space and a discrete interface of brittle fibers and find numerically that nu=1.5, We conjecture it to be 3/2. This yields zeta=3/5. We also obtain by direct numerical simulations zeta=0.6 in excellent agreement with our prediction. This modelling is for the first time in close agreement with experimental observations.Comment: 4 pages RevTeX

    Anomalous roughening of wood fractured surfaces

    Full text link
    Scaling properties of wood fractured surfaces are obtained from samples of three different sizes. Two different woods are studied: Norway spruce and Maritime pine. Fracture surfaces are shown to display an anomalous dynamic scaling of the crack roughness. This anomalous scaling behavior involves the existence of two different and independent roughness exponents. We determine the local roughness exponents ζloc{\zeta}_{loc} to be 0.87 for spruce and 0.88 for pine. These results are consistent with the conjecture of a universal local roughness exponent. The global roughness exponent is different for both woods, ζ\zeta = 1.60 for spruce and ζ\zeta = 1.35 for pine. We argue that the global roughness exponent ζ\zeta is a good index for material characterization.Comment: 7 two columns pages plus 8 ps figures, uses psfig. To appear in Physical Review

    Average crack-front velocity during subcritical fracture propagation in a heterogeneous medium

    Get PDF
    We study the average velocity of crack fronts during stable interfacial fracture experiments in a heterogeneous quasibrittle material under constant loading rates and during long relaxation tests. The transparency of the material (polymethylmethacrylate) allows continuous tracking of the front position and relation of its evolution to the energy release rate. Despite significant velocity fluctuations at local scales, we show that a model of independent thermally activated sites successfully reproduces the large-scale behavior of the crack front for several loading conditions

    An extremal model for amorphous media plasticity

    Full text link
    An extremal model for the plasticity of amorphous materials is studied in a simple two-dimensional anti-plane geometry. The steady-state is analyzed through numerical simulations. Long-range spatial and temporal correlations in local slip events are shown to develop, leading to non-trivial and highly anisotropic scaling laws. In particular, the plastic strain is shown to statistically concentrate over a region which tends to align perpendicular to the displacement gradient. By construction, the model can be seen as giving rise to a depinning transition, the threshold of which (i.e. the macroscopic yield stress) also reveal scaling properties reflecting the localization of the activity.Comment: 4 pages, 5 figure

    Incremental least action principle in the framework of thermodynamics of irreversible processes

    Get PDF
    In this paper, an incremental least action principle is proposed using the framework of the thermodynamics of irreversible processes. First, we establish that an extensive thermodynamic potential defined over an infinitesimal volume satisfies a differential conservation law with close similarities to the Liouville theorem but extended to irreversible processes. This property is applied to a generalized thermodynamic potential depending on equilibrium variables and nonequilibrium flows. It allows the formulation of an absolute integral invariant (AII) that is shown to have a broader field of application than the Poincaré-Cartan integral invariant of dynamic systems. Once integrated over a finite volume, it naturally defines an integral functional that fulfills an incremental least action principle. The Fréchet derivative of the Euler-Lagrange equations associated with the functional is calculated, and its self-adjointness is shown to be equivalent to the symmetry of the classical Tisza and Onsager matrices which link respectively extensive variables to intensive variables and nonequilibrium flows to generalized forces. Finally, the proposed AII and least action principle are formulated for the case of a simple physical process (heat conduction), to illustrate (i) its link with the extended irreversible thermodynamics and (ii) its applications to numerical simulations

    Scaling of Crack Surfaces and Implications on Fracture Mechanics

    Full text link
    The scaling laws describing the roughness development of crack surfaces are incorporated into the Griffith criterion. We show that, in the case of a Family-Vicsek scaling, the energy balance leads to a purely elastic brittle behavior. On the contrary, it appears that an anomalous scaling reflects a R-curve behavior associated to a size effect of the critical resistance to crack growth in agreement with the fracture process of heterogeneous brittle materials exhibiting a microcracking damage.Comment: Revtex, 4 pages, 3 figures, accepted for publication in Physical Review Letter

    Downscaling of fracture energy during brittle creep experiments

    Get PDF
    We present mode 1 brittle creep fracture experiments along fracture surfaces that contain strength heterogeneities. Our observations provide a link between smooth macroscopic time-dependent failure and intermittent microscopic stress-dependent processes. We find the large-scale response of slow-propagating subcritical cracks to be well described by an Arrhenius law that relates the fracture speed to the energy release rate. At the microscopic scale, high-resolution optical imaging of the transparent material used (PMMA) allows detailed description of the fracture front. This reveals a local competition between subcritical and critical propagation (pseudo stick-slip front advances) independently of loading rates. Moreover, we show that the local geometry of the crack front is self-affine and the local crack front velocity is power law distributed. We estimate the local fracture energy distribution by combining high-resolution measurements of the crack front geometry and an elastic line fracture model. We show that the average local fracture energy is significantly larger than the value derived from a macroscopic energy balance. This suggests that homogenization of the fracture energy is not straightforward and should be taken cautiously. Finally, we discuss the implications of our results in the context of fault mechanics. Copyright © 2011 by the American Geophysical Union
    corecore