92 research outputs found

    Fading AGN candidates: AGN histories and outflow signatures

    Get PDF
    We consider the energy budgets and radiative history of eight fading active galactic nuclei (AGNs), identified from an energy shortfall between the requirements to ionize very extended (radius \u3e 10 kpc) ionized clouds and the luminosity of the nucleus as we view it directly. All show evidence of significant fading on timescales of ≈50,000 yr. We explore the use of minimum ionizing luminosity Qion derived from photoionization balance in the brightest pixels in Hα at each projected radius. Tests using presumably constant Palomar–Green QSOs, and one of our targets with detailed photoionization modeling, suggest that we can derive useful histories of individual AGNs, with the caveat that the minimum ionizing luminosity is always an underestimate and subject to uncertainties about fine structure in the ionized material. These consistency tests suggest that the degree of underestimation from the upper envelope of reconstructed Qion values is roughly constant for a given object and therefore does not prevent such derivation. The AGNs in our sample show a range of behaviors, with rapid drops and standstills; the common feature is a rapid drop in the last ≈2 × 104 yr before the direct view of the nucleus. The e-folding timescales for ionizing luminosity are mostly in the thousands of years, with a few episodes as short as 400 yr. In the limit of largely obscured AGNs, we find additional evidence for fading from the shortfall between even the lower limits from recombination balance and the maximum luminosities derived from far-infrared fluxes. We compare these long-term light curves, and the occurrence of these fading objects among all optically identified AGNs, to simulations of AGN accretion; the strongest variations over these timespans are seen in models with strong and local (parsec-scale) feedback. We present Gemini integral-field optical spectroscopy, which shows a very limited role for outflows in these ionized structures. While rings and loops of emission, morphologically suggestive of outflow, are common, their kinematic structure shows some to be in regular rotation. UGC 7342 exhibits local signatures of outflows \u3c300 km s−1, largely associated with very diffuse emission, and possibly entraining gas in one of the clouds seen in Hubble Space Telescope images. Only in the Teacup AGN do we see outflow signatures of the order of 1000 km s−1. In contrast to the extended emission regions around many radio-loud AGNs, the clouds around these fading AGNs consist largely of tidal debris being externally illuminated but not displaced by AGN outflows

    Estimating aerodynamic roughness over complex surface terrain

    Get PDF
    Surface roughness plays a key role in determining aerodynamic roughness length (zo) and shear velocity, both of which are fundamental for determining wind erosion threshold and potential. While zo can be quantified from wind measurements, large proportions of wind erosion prone surfaces remain too remote for this to be a viable approach. Alternative approaches therefore seek to relate zo to morphological roughness metrics. However, dust-emitting landscapes typically consist of complex small-scale surface roughness patterns and few metrics exist for these surfaces which can be used to predict zo for modeling wind erosion potential. In this study terrestrial laser scanning was used to characterize the roughness of typical dust-emitting surfaces (playa and sandar) where element protrusion heights ranged from 1 to 199 mm, over which vertical wind velocity profiles were collected to enable estimation of zo. Our data suggest that, although a reasonable relationship (R2 > 0.79) is apparent between 3-D roughness density and zo, the spacing of morphological elements is far less powerful in explaining variations in zo than metrics based on surface roughness height (R2 > 0.92). This finding is in juxtaposition to wind erosion models that assume the spacing of larger-scale isolated roughness elements is most important in determining zo. Rather, our data show that any metric based on element protrusion height has a higher likelihood of successfully predicting zo. This finding has important implications for the development of wind erosion and dust emission models that seek to predict the efficiency of aeolian processes in remote terrestrial and planetary environments

    MrkH, a Novel c-di-GMP-Dependent Transcriptional Activator, Controls Klebsiella pneumoniae Biofilm Formation by Regulating Type 3 Fimbriae Expression

    Get PDF
    Klebsiella pneumoniae causes significant morbidity and mortality worldwide, particularly amongst hospitalized individuals. The principle mechanism for pathogenesis in hospital environments involves the formation of biofilms, primarily on implanted medical devices. In this study, we constructed a transposon mutant library in a clinical isolate, K. pneumoniae AJ218, to identify the genes and pathways implicated in biofilm formation. Three mutants severely defective in biofilm formation contained insertions within the mrkABCDF genes encoding the main structural subunit and assembly machinery for type 3 fimbriae. Two other mutants carried insertions within the yfiN and mrkJ genes, which encode GGDEF domain- and EAL domain-containing c-di-GMP turnover enzymes, respectively. The remaining two isolates contained insertions that inactivated the mrkH and mrkI genes, which encode for novel proteins with a c-di-GMP-binding PilZ domain and a LuxR-type transcriptional regulator, respectively. Biochemical and functional assays indicated that the effects of these factors on biofilm formation accompany concomitant changes in type 3 fimbriae expression. We mapped the transcriptional start site of mrkA, demonstrated that MrkH directly activates transcription of the mrkA promoter and showed that MrkH binds strongly to the mrkA regulatory region only in the presence of c-di-GMP. Furthermore, a point mutation in the putative c-di-GMP-binding domain of MrkH completely abolished its function as a transcriptional activator. In vivo analysis of the yfiN and mrkJ genes strongly indicated their c-di-GMP-specific function as diguanylate cyclase and phosphodiesterase, respectively. In addition, in vitro assays showed that purified MrkJ protein has strong c-di-GMP phosphodiesterase activity. These results demonstrate for the first time that c-di-GMP can function as an effector to stimulate the activity of a transcriptional activator, and explain how type 3 fimbriae expression is coordinated with other gene expression programs in K. pneumoniae to promote biofilm formation to implanted medical devices

    Discovery of enzymes for toluene synthesis from anoxic microbial communities

    Get PDF
    Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic-hydrocarbon-producing enzymes, and will enable first-time biochemical synthesis of an aromatic fuel hydrocarbon from renewable resources, such as lignocellulosic biomass, rather than from petroleum

    The NAA Challenge: Serving Millennials Through Subscription Boxes

    Get PDF
    As an older generation of University of Nebraska-Lincoln graduates phases out, capturing the attention of millennials becomes more and more important. Unfortunately for the Nebraska Alumni Association (NAA), many soon to be and recent UNL graduates do not see the value in spending hundreds of dollars to become a lifetime member. Although some people we interviewed saw an NAA membership as just a donation and are not expecting much in return. We believe that the Nebraska Alumni Association can take advantage of its connections with the University of Nebraska-Lincoln to offer experiences through subscription boxes that will engage millennials and increase membership interest. Our survey has shown us that interest is high in UNL themed subscription boxes with our millennial targets. We have laid out the basic expenses and revenues associated with the subscription boxes and have estimated that the NAA could make additional money while greatly growing millennial\u27s interest in the association. Approximately seventy-five percent of our survey respondents noted that Nebraska Alumni Association subscription boxes would have a higher value than other benefits such as coupons or university news. This shows that the value in a subscription box service would increase millennial\u27s interest in joining the NAA

    Higher frequencies of HLA DQB1*05:01 and anti-glycosphingolipid antibodies in a cluster of severe Guillain-Barr, syndrome

    No full text
    Few regional and seasonal Guillain-Barr, syndrome (GBS) clusters have been reported so far. It is unknown whether patients suffering from sporadic GBS differ from GBS clusters with respect to clinical and paraclinical parameters, HLA association and antibody response to glycosphingolipids and Campylobacter jejuni (Cj). We examined 40 consecutive patients with GBS from the greater Munich area in Germany with 14 of those admitted within a period of 3 months in fall 2010 defining a cluster of GBS. Sequencing-based HLA typing of the HLA genes DRB1, DQB1, and DPB1 was performed, and ELISA for anti-glycosphingolipid antibodies was carried out. Clinical and paraclinical findings (Cj seroreactivity, cerebrospinal fluid parameters, and electrophysiology) were obtained and analyzed. GBS cluster patients were characterized by a more severe clinical phenotype with more patients requiring mechanical ventilation and higher frequencies of autoantibodies against sulfatide, GalC and certain ganglioside epitopes (54 %) as compared to sporadic GBS cases (13 %, p = 0.017). Cj seropositivity tended to be higher within GBS cluster patients (69 %) as compared to sporadic cases (46 %, p = 0.155). We noted higher frequencies of HLA class II allele DQB1*05:01 in the cluster cohort (23 %) as compared to sporadic GBS patients (3 %, p = 0.019). Cluster of severe GBS was defined by higher frequencies of autoantibodies against glycosphingolipids. HLA class II allele DQB1*05:01 might contribute to clinical worsening in the cluster patients
    • …
    corecore