201 research outputs found

    Links between Barents‐Kara sea ice and the Extratropical Atmospheric Circulation explained by internal variability and tropical forcing

    Get PDF
    This is the final version. Available from American Geophysical Union (AGU) via the DOI in this record.Changes in Arctic sea ice have been proposed to affect midlatitude winter atmospheric circulation, often based on observed coincident variability. However, causality of this covariability remains unclear. Here, we address this issue using atmospheric model experiments prescribed with observed sea surface temperature variations and either constant or time‐varying sea ice variability. We show that the observed relationship between late‐autumn Barents‐Kara sea ice and the winter North Atlantic Oscillation can be reproduced by simulated atmospheric internal variability but is not simulated as a forced response to sea ice. Observations and models suggest reduced sea ice is linked to a weaker Aleutian Low. We show that simulated Aleutian Low variability is correlated with observed sea ice variability even in simulations with fixed sea ice, implying that this relationship is not incidental. Instead, we suggest that covariability between sea ice and the Aleutian Low originates from tropical sea surface temperature and rainfall variations and their teleconnections to the extratropics.Natural Environment Research Council (NERC

    Intraseasonal effects of El Niño-Southern Oscillation on North Atlantic climate

    Get PDF
    This is the final version. Available from American Meteorological Society via the DOI in this record.It is well established that El Niño-Southern Oscillation (ENSO) impacts the North Atlantic-European (NAE) climate, with the strongest influence in winter. In late winter, the ENSO signal travels via both tropospheric and stratospheric pathways to the NAE sector and often projects onto the North Atlantic Oscillation. However, this signal does not strengthen gradually during winter, and some studies have suggested that the ENSO signal is different between early and late winter and that the teleconnections involved in the early winter subperiod are not well understood. In this study, we investigate the ENSO teleconnection to NAE in early winter (November-December) and characterize the possible mechanisms involved in that teleconnection. To do so, observations, reanalysis data and the output of different types of model simulations have been used. We show that the intraseasonal winter shift of the NAE response to ENSO is detected for both El Niño and La Niña and is significant in both observations and initialized predictions, but it is not reproduced by free-running Coupled Model Intercomparison Project phase 5 (CMIP5) models. The teleconnection is established through the troposphere in early winter and is related to ENSO effects over the Gulf of Mexico and Caribbean Sea that appear in rainfall and reach the NAE region. CMIP5 model biases in equatorial Pacific ENSO sea surface temperature patterns and strength appear to explain the lack of signal in the Gulf of Mexico and Caribbean Sea and, hence, their inability to reproduce the intraseasonal shift of the ENSO signal over Europe.European CommissionEuropean CommissionNatural Environment Research Council (NERC

    Effect of increased ocean resolution on model errors in El Niño–Southern Oscillation and its teleconnections

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The HighResMIP and HadISST data used in this study are freely available online at https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/ under the HighResMIP target MIP. The JRA-55 data used in this work are freely available at https://doi.org/10.5065/D60G3H5B/.Despite the complexity of the underlying processes, coupled climate models simulate fairly realistic El Niño–Southern Oscillation dynamics and teleconnections. However, there are many long-standing errors that remain. We use the High Resolution Model Intercomparison Project suite of models to assess how El Niño–Southern Oscillation and its late-winter teleconnection to the North Pacific changes when ocean resolution is quadrupled from 1° to 0.25°. We find that increased resolution eliminates large errors in the western extent of El Niño and La Niña sea-surface temperature anomalies, and that there is some improvement in the asymmetry between El Niño and La Niña. In low-resolution models, the teleconnections from El Niño and La Niña to the North Pacific are both underestimated and are centred too far west. With increased resolution, the position of the teleconnection is highly accurate during El Niño, but there is less improvement during La Niña. We find no significant improvements in teleconnection strength for either phase. Tropical mean-state sea-surface temperatures are found to be too cold by around 1°C throughout the central/eastern Pacific in low-resolution models, but this bias is not present in high-resolution models. Despite this, a large discrepancy between observed and modelled mean-state tropical rainfall persists in high-resolution models, which may limit improvements in the simulation of the La Niña teleconnection.Natural Environment Research Council (NERC)Met Office Hadley Centre Climate Programm

    High risk of unprecedented UK rainfall in the current climate

    Get PDF
    This is the final version. Available on open access from Springer Nature via the DOI in this recordIn winter 2013/14 a succession of storms hit the UK leading to record rainfall and flooding in many regions including south east England. In the Thames river valley there was widespread flooding, with clean-up costs of over £1 billion. There was no observational precedent for this level of rainfall. Here we present analysis of a large ensemble of high-resolution initialised climate simulations to show that this event could have been anticipated, and that in the current climate there remains a high chance of exceeding the observed record monthly rainfall totals in many regions of the UK. In south east England there is a 7% chance of exceeding the current rainfall record in at least one month in any given winter. Expanding our analysis to some other regions of England and Wales the risk increases to a 34% chance of breaking a regional record somewhere each winter.A succession of storms during the 2013-2014 winter led to record flooding in the UK. Here, the authors use high-resolution climate simulations to show that this event could have been anticipated and that there remains a high chance of exceeding observed record monthly rainfall totals in many parts of the UK.Development of the Met Office Hadley Centre’s decadal climate predictions, the innovative scientific research that contributed to the NFRR, has been resourced through the MOHCCP, the NCIC, the Newton Fund, and SPECS. Development of the methodology was supported by the Newton Fund

    Subseasonal Vacillations in the Winter Stratosphere

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability: Data and code used to produce all figures and tables can be found at this site: https://doi.org/10.5281/zenodo.3675313Simple models of wave-mean flow interaction in the Northern Hemisphere winter stratosphere suggest the existence of subseasonal vacillations in the strength of the polar vortex. Here, we define a sinusoidal fit to the daily deseasonalized stratospheric wind. A suitable fixed period and amplitude for the sine waves is identified. Their mean value, equivalent to polar vortex strength, and phase, equivalent to the timing of sudden stratospheric warmings during winter, varies from year to year. These vacillations explain much of the subseasonal and interannual variability in the monthly mean vortex strength and, consistent with wave-mean flow interaction theory, their amplitude correlates positively with the magnitude of winter mean planetary wave driving. Furthermore, they allow skillful prediction of the vortex strength one month ahead. Identifying and understanding this subseasonal variability has potential implications for winter seasonal forecasts, as the December–February mean behavior may miss important subseasonal events.National Natural Science Foundation of ChinaNewton Fun

    An unexpected disruption of the atmospheric quasi-biennial oscillation

    Get PDF
    This is the author accepted manuscript. The final version is available from AAAS via the DOI in this recordWe thank the European Centre for Medium-Range Weather Forecasts for providing ERA-Interim and Operational Analysis data (www.ecmwf.int/en/forecasts) and the Freie Universität Berlin for providing radiosonde data (www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo). The CMIP5 data was obtained from the British Atmospheric Data Centre (browse.ceda.ac.uk/browse/badc/cmip5). A summary of data used in the study is listed in table S1.One of the most repeatable phenomena seen in the atmosphere, the quasi-biennial oscillation (QBO) between prevailing eastward and westward wind jets in the equatorial stratosphere (approximately 16 to 50 kilometers altitude), was unexpectedly disrupted in February 2016. An unprecedented westward jet formed within the eastward phase in the lower stratosphere and cannot be accounted for by the standard QBO paradigm based on vertical momentum transport. Instead, the primary cause was waves transporting momentum from the Northern Hemisphere. Seasonal forecasts did not predict the disruption, but analogous QBO disruptions are seen very occasionally in some climate simulations. A return to more typical QBO behavior within the next year is forecast, although the possibility of more frequent occurrences of similar disruptions is projected for a warming climate.S.M.O. was supported by UK Natural Environment Research Council grants NE/M005828/1 and NE/P006779/1. A.A.S., J.R.K., and N.B. were supported by the Joint UK Business, Energy and Industrial Strategy/Defra Met Office Hadley Centre Climate Programme (GA01101). A.A.S. and J.R.K. were additionally supported by the EU Seventh Framework Programme SPECS (Seasonal-to-decadal climate Prediction for the improvement of European Climate Services) project

    Common Mechanism for Interannual and Decadal Variability in the East African Long Rains

    Get PDF
    The East African long rains constitute the main crop‐growing season in the region. Interannual predictability of this season is low in comparison to the short rains, and recent decadal drying contrasts with climate projections of a wetter future (the “East African climate paradox”). Here, we show that long rains rainfall totals are strongly correlated with 700 hPa zonal winds across the Congo basin and Gulf of Guinea ( urn:x-wiley:grl:media:grl61425:grl61425-math-0001). Westerly anomalies align with more rainfall, with the same mechanism controlling covariability on interannual and decadal time scales. On both time scales wind anomalies are linked to geopotential anomalies over the Sahel and Sahara, and warming there. Rainfall and wind are significantly correlated with the Madden‐Julian Oscillation (MJO) amplitude, and around 18% of the decadal drying can be explained by MJO amplitude variability. This work shows that predictions of East African rainfall across time scales require robust prediction of both zonal winds and MJO activity

    Seasonal winter forecasts and the stratosphere

    Get PDF
    Published© 2016 Royal Meteorological Society. We investigate seasonal forecasts of the winter North Atlantic Oscillation (NAO) and their relationship with the stratosphere. Climatological frequencies of sudden stratospheric warming (SSW) and strong polar vortex (SPV) events are well represented and the predicted risk of events varies between 25 and 90% from winter to winter, indicating predictability beyond the deterministic range. The risk of SSW and SPV events relates to predicted NAO as expected, with NAO shifts of -6.5 and +4.8hPa in forecast members containing SSW and SPV events. Most striking of all is that forecast skill of the surface winter NAO vanishes from these hindcasts if members containing SSW events are excluded.This work was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101), the UK Public Weather Service research program and the European Union Framework 7 SPECS project. The contribution of AYK is funded by FMI’s tenure track program and the Academy of Finland under grant 286298
    corecore