12 research outputs found

    Design and model test of a soft-connected lattice-structured floating solar photovoltaic concept for harsh offshore conditions

    Get PDF
    Various types of floating solar photovoltaic (FPV) devices have been previously proposed, designed and constructed with applications primarily limited to onshore water bodies or nearshore regions with benign environmental conditions. This paper proposes a novel FPV concept which can survive harsh environmental conditions with extreme wave heights above 10 m. This concept uses standardised lightweight semi-submersible floats made of circular materials as individual modules. The floating modules are soft connected with ropes to form an FPV array. We first present the conceptual design of the floats and the connection systems, including hydrostatic, hydrodynamic, and structural assessments of the floats. To verify the motion response performance, we carried out 1:60 scaled model tests for a 2 by 3 array under regular and irregular wave conditions. From the time series and response spectra, the motion characteristics of the array and the mooring responses are analysed in detail. The proposed concept exhibits excellent performances in terms of modular motions with limited wave overtopping and no contact is observed between adjacent modules under the extreme wave conditions. The findings of this study can serve as a valuable reference to developing reliable and cost-effective FPV technologies for offshore conditions.publishedVersio

    Ship Propulsion Hydrodynamics in Waves

    No full text

    Experimental measurements of propulsive factors in following and head waves

    No full text
    The results from resistance measurements in calm water and load-varying self-propulsion tests in calm water and regular head and following waves are presented. The experimental campaign is conducted in the large towing tank at SINTEF Ocean (formerly MARINTEK). The openly accessible hull of the single screw Duisburg Test Case is selected as the test case. The wave added resistance, ship motions RAOs, axial wake fraction, thrust deduction fraction, relative rotative efficiency, hull efficiency, propeller open-water efficiency, propeller efficiency behind ship, and propulsive efficiency are determined. Regarding the calculation of the thrust deduction fraction, the results of the experiments show the effect of utilizing the bare hull resistance instead of the linearly extrapolated ship resistance at zero propeller thrust. If the former is applied, the thrust deduction fraction will be dependent on the load of the propeller. If the latter is utilized, the thrust deduction fraction will be independent of the propeller loading. As expected, the wave added resistance is lower in following waves than in head waves. The heave and pitch motions are larger in head waves, whereas the surge motion is higher in following waves. The effective wake fraction is affected by both the propeller loading and the ship motions. In the case of the former, the higher the propeller loading, the lower the effective wake fraction. For the latter, a general decrease in effective wake fraction is noticed in head waves compared to calm water. On the contrary, the effective wake fraction is higher in following waves in comparison to calm water. The thrust deduction fraction computed with the extrapolated ship resistance appears to be slightly affected by the ship motions. However, a final conclusion was not drawn because of the large uncertainties in the measurements of this propulsive coefficient. The variation in propeller open-water efficiency is mainly related to the change in propeller loading. The relative rotative efficiency is barely affected by both the propeller loading and the motions of the ship. Except in the case of very large wave amplitudes, the hull efficiency is hardly influenced by the ship motions. The propulsive efficiency is primarily affected by the change in propeller open-water efficiency. Based on the results of the experimental campaign, overload tests in calm water provide a good estimation of the propulsion efficiency in waves for the selected case vessel
    corecore