8 research outputs found

    Trabecular bone structural variation throughout the human lower limb.

    Get PDF
    Trabecular bone is responsive to mechanical loading, and thus may be a useful tool for interpreting past behaviour from fossil morphology. However, the ability to meaningfully interpret variation in archaeological and hominin trabecular morphology depends on the extent to which trabecular bone properties are integrated throughout the postcranium or are locally variable in response to joint specific loading. We investigate both of these factors by comparing trabecular bone throughout the lower limb between a group of highly mobile foragers and two groups of sedentary agriculturalists. Trabecular bone structure is quantified in four volumes of interest placed within the proximal and distal joints of the femur and tibia. We determine how trabecular structures correspond to inferred behavioural differences between populations and whether the patterns are consistent throughout the limb. A significant correlation was found between inferred mobility level and trabecular bone structure in all volumes of interest along the lower limb. The greater terrestrial mobility of foragers is associated with higher bone volume fraction, and thicker and fewer trabeculae (lower connectivity density). In all populations, bone volume fraction decreases while anisotropy increases proximodistally throughout the lower limb. This observation mirrors reductions in cortical bone mass resulting from proximodistal limb tapering. The reduction in strength associated with reduced bone volume fraction may be compensated for by the increased anisotropy in the distal tibia. A similar pattern of trabecular structure is found throughout the lower limb in all populations, upon which a signal of terrestrial mobility appears to be superimposed. These results support the validity of using lower limb trabecular bone microstructure to reconstruct terrestrial mobility levels from the archaeological and fossil records. The results further indicate that care should be taken to appreciate variation resulting from differences in habitual activity when inferring behaviour from the trabecular structure of hominin fossils through comparisons with modern humans.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n.617627 (to JTS), the Arts and Humanities Research Council Doctoral Training Programme, AH/14/Archaeology/3 (to JPPS), and National Science Foundation Grant BCS-0617097 (to TMR).This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Elsevier

    Growth and development of trabecular structure in the calcaneus of Japanese macaques (Macaca fuscata) reflects locomotor behavior, life history, and neuromuscular development.

    Get PDF
    Bone structure dynamically adapts to its mechanical environment throughout ontogeny by altering the structure of trabecular bone, the three-dimensional mesh-like structure found underneath joint surfaces. Trabecular structure, then, can provide a record of variation in loading directions and magnitude; and in ontogenetic samples, it can potentially be used to track developmental shifts in limb posture. We aim to broaden the analysis of trabecular bone ontogeny by incorporating interactions between ontogenetic variation in locomotor repertoire, neuromuscular maturation, and life history. We examine the associations between these variables and age-related variation in trabecular structure in the calcaneus of Japanese macaques (Macaca fuscata). We used high-resolution micro-computed tomography scanning to image the calcaneus in a cross-sectional sample of 34 juvenile M. fuscata aged between 0 and 7 years old at the Primate Research Institute, Japan. We calculated whole bone averages of standard trabecular properties and generated whole-bone morphometric maps of bone volume fraction and Young's modulus. Trabecular structure becomes increasingly heterogeneous in older individuals. Bone volume fraction (BV/total volume [TV]) decreases during the first month of life and increases afterward, coinciding with the onset of independent locomotion in M. fuscata. At birth, primary Young's modulus is oriented orthogonal to the ossification center, but after locomotor onset bone structure becomes stiffest in the direction of joint surfaces and muscle attachments. Age-related variation in bone volume fraction is best predicted by an interaction between the estimated percentage of adult brain size, body mass, and locomotor onset. To explain our findings, we propose a model where interactions between age-related increases in body weight and maturation of the neuromuscular system alter the loading environment of the calcaneus, to which the internal trabecular structure dynamically adapts. This model cannot be directly tested based on our cross-sectional data. However, confirmation of the model by longitudinal experiments and in multiple species would show that trabecular structure can be used both to infer behavior from fossil morphology and serve as a valuable proxy for neuromuscular maturation and life history events like locomotor onset and the achievement of an adult-like gait. This approach could significantly expand our knowledge of the biology and behavior of fossil species

    Evolutionary loss of complexity in human vocal anatomy as an adaptation for speech

    Get PDF
    Human speech production obeys the same acoustic principles as vocal production in other animals but has distinctive features: A stable vocal source is filtered by rapidly changing formant frequencies. To understand speech evolution, we examined a wide range of primates, combining observations of phonation with mathematical modeling. We found that source stability relies upon simplifications in laryngeal anatomy, specifically the loss of air sacs and vocal membranes. We conclude that the evolutionary loss of vocal membranes allows human speech to mostly avoid the spontaneous nonlinear phenomena and acoustic chaos common in other primate vocalizations. This loss allows our larynx to produce stable, harmonic-rich phonation, ideally highlighting formant changes that convey most phonetic information. Paradoxically, the increased complexity of human spoken language thus followed simplification of our laryngeal anatomy.</jats:p

    Intrapopulation variation in lower limb trabecular architecture.

    Get PDF
    OBJECTIVES: Trabecular structure is frequently used to differentiate between highly divergent mechanical environments. Less is known regarding the response of the structural properties to more subtle behavioral differences, as the range of intrapopulation variation in trabecular architecture is rarely studied. Examining the extent to which lower limb trabecular architecture varies when inferred mobility levels and environment are consistent between groups within a relatively homogenous population may aid in the contextualization of interpopulation differences, improve detectability of sexual dimorphism in trabecular structure, and improve our understanding of trabecular bone functional adaptation. MATERIALS AND METHODS: The study sample was composed of adult individuals from three high/late medieval cemeteries from Cambridge (10th-16th c.), a hospital (n = 57), a parish cemetery (n = 44) and a friary (n = 14). Trabecular architecture was quantified in the epiphyses of the femur and tibia, using high resolution computed tomography. RESULTS: The parish individuals had the lowest bone volume fraction and trabecular thickness in most regions. Multiple sex differences were observed, but the patterns were not consistent across volumes of interest. DISCUSSION: Differences between the three groups highlight the great variability of trabecular bone architecture, even within a single sedentary population. This indicates that trabecular bone may be used in interpreting subtle behavioral differences, and suggests that multiple archaeological sites need to be studied to characterize structural variation on a population level. Variation in sex and group differences across anatomical locations further demonstrates the site-specificity in trabecular bone functional adaptation, which might explain why little consistent sexual dimorphism has been reported previously

    A Habitual Activity in Pre-industrial Rural and Urban Dutch Populations: A Study of Lower Limb Cross-sectional Geometry

    No full text
    This study combines historical data and the principles of bone functional adaptation to examine variation in terrestrial mobility in men and women from pre-industrial urban (Alkmaar 7M, 9F) and rural (Klaaskinderk- erke 12M, 8F; Middenbeemster 21M, 22F) Dutch populations. Cross-sectional properties of the femoral and tib- ial midshaſt are determined to investigate variation in lower limb mechanical loading. All populations had comparable age ranges. Rural Middenbeemster males had significantly more elliptically shaped tibiae compared to the other populations. Rural males from Klaaskinderkerke had significantly greater femoral cross-sectional area and torsional rigidity compared to females. In the tibia, the males from both rural populations had greater torsional rigidity and cross-sectional area compared to females. In the rural Middenbeemster population the males also had significantly more elliptically shaped tibiae compared to females. While no sexual dimorphism was found in the urban Alkmaar, significantly greater variation in lower limb cross-sectional properties was found for both males and females relative to the rural populations. These results conform to predictions based on the historical literature of greater lower limb loading in rural males compared to females as well as a greater variety of tasks performed in urban environments. The lack of significant differences in lower limb torsional rigidity or shape between populations in either sex suggests that rural life was not necessarily more physically strenuous than urban life in pre-industrial Dutch populations. However, variation in sexual dimorphism sug- gests that labor between males and females was differently organized in the rural and urban samples
    corecore