454 research outputs found

    Phenology-based land cover classification using Landsat 8 time series

    Get PDF
    This article describes the methodology and results of a new JRC phenology-based classification algorithm able to generate accurate land cover maps in a fully automatic manner from Landsat 8 (L8) remote sensed data available since 12th April 2013 at no charge throughout the USGS website. A preliminary study aiming to bypass the single date classification inaccuracy (mainly due to seasonality) using long term MODIS time series as a “driver” to fill gaps between high resolution data, has been carried out. The high global acquisition frequency (~16 days) and distribution policy are making Landsat 8 product extremely suitable for near real time land cover mapping and monitoring. Five national parks in east Africa have been selected as study areas (Mahale Mountains, Mana Pools, West Lunga, Gorongosa, Tsimanampetsotsa); they are covering diverse eco-regions and vegetation types, from evergreen to deciduous. A buffer of 20 km around each park has been considered as well. Selected single date images were first preprocessed in order to convert raw DN values to top of atmosphere (TOA) reflectance and minimizes spectral differences caused by different acquisition time, sun elevation, sun-earth distance, and after processed by the algorithm to generate a thematic raster map with land cover classes. Is worth noting that the single date classification accuracy is closely related to the acquisition date of the image, the status of the vegetation and weather conditions such as cloud and shadows often present in tropical regions; here the need of developing a phenology based algorithm that considers the vegetation evolution and generates a more accurate land cover map including evergreen and deciduous discrimination on the basis of “frequency” rules. Land cover maps have been created for all parks and an exhaustive accuracy assessment has been carried out on Mahale Mountains and Tsimanampetsotsa. The combined overall accuracy of 82.8% demonstrates the high potentiality of this method and makes it usable at either local or regional scale.JRC.H.3-Forest Resources and Climat

    The ReCaREDD project, Brazil workshops – Curitiba and São José dos Campos, 13th – 20th April 2016

    Get PDF
    EMBRAPA Florestas, Curitiba, Brazil: The workshop was held at the headquarters of EMBRAPA Florestas in Curitiba/Colombo from 13th – 15th April, as a follow-up of EMBRAPA’s visit in Ispra in November 2015 (supported by the 8th EU-Brazil Sector Dialogues Programme). EMBAPA Florestas is responsible for the development of a remote sensing – based methodology for the ‘Landscape Study’ as part of the currently ongoing Brazilian National Forest Inventory. In this context, the newest version of the JRC IMPACT Toolbox was presented. IMPACT is an essential tool integrated in the methodology of the ‘NFI Landscape Study’, which should at some stage be applied to more than 5.000 sample units. Seven researchers from EMBRAPA Florestas attended the workshop. INPE, São José dos Campos, Brazil: A three-day workshop, attended by 15 researchers, was held at the INPE Remote Sensing department, the main topics discussed were the possible usage by the JRC of the new version of INPE’s TerraLib segmentation software, the presentation of the new version of the JRC IMPACT Toolbox, several joint INPE-JRC research projects (long-term forest cover change assessment in the Amazon, selective logging monitoring in Mato Grosso State), and, in the general the way forward of the remote sensing – based forestry research collaboration between the two research centres, with a specific focus on forest degradation monitoring. INPE is responsible for the technical aspects regarding the Brazilian REDD reporting.JRC.D.1-Bio-econom

    Dynamique des brûlis dans le Parc Régional du W, le Parc National de La Boucle de la Pendjari et la Réserve d¿Arly - Implications pour la gestion de ces aires protégées

    Get PDF
    Le parc régional transfrontalier du W (Bénin, Burkina Faso et Niger), d¿une superficie de 10,300 km2, fait partie du complexe écologique du WAP (30,000 km2). Le Parc du W est classé, depuis novembre 2002, réserve transfrontalière de la biosphère et bénéficie d¿un soutien technique et financier de l¿UE depuis janvier 2001 dans le cadre du programme Parc W ¿ ECOPAS. La maîtrise des brûlis est un aspect essentiel dans la gestion du parc. Le CCR a donc effectué un suivi satellitaire systématique des feux durant la saison sèche 2006-2007 ainsi qu¿une analyse rétrospective jusqu¿en janvier 2000. Ce document présente les caractéristiques essentielles de la saisonnalité des brûlis au sein du WAP ainsi que leur distribution spatiale. Cet ensemble d¿information est confronté au Plan d¿Aménagement et de Brûlis souhaité par les gestionnaires du Parc du W. Les conclusions de cette étude devraient aider à la mise en place du plan de brûlis et à son adaptation progressive pour mieux répondre aux objectifs d¿aménagement et de conservation du parc.JRC.H.3-Global environement monitorin

    Dynamique des Brûlis dans les Aires Protégées du Réseau SUN [Bénin, Burkina Faso, Niger et Sénégal] - Saison Sèche 2007-2008: Octobre 2007 - Mars 2008

    Get PDF
    Le CCR a effectué un suivi systématique des feux dans les 5 aires protégées du réseau SUN [forêt classées de Patako et de Boulon ; parcs nationaux du W-du-Bénin, W-du-Burkina et W-du-Niger] pendant la saison sèche 2007-2008, sur la base d¿images à moyenne résolution acquises par le capteur MODIS installé à bord des satellites Terra et Aqua. L¿élaboration de ces données a permis i)l¿inventaire hebdomadaire des épisodes de feu ; ii)la cartographie des surfaces brûlées, en moyenne deux fois par mois ; iii)l¿établissement d¿un Bulletin Hebdomadaire d¿Information sur les feux, à destination des membres du réseau et des équipes de gestion des aires protégées concernées. Par ailleurs il est montré comment le rapport entre la densité des feux [nombre de feux / 1000 ha] à l¿extérieur et à l¿intérieur d¿une aire protégée constitue un bon indicateur de différenciation de l¿aire par rapport à l¿espace environnant, en termes de disponibilité et d¿agencement spatial du combustible. C¿est une indication i) de la qualité de l¿habitat naturel dans l¿aire; ii) de son degré d¿isolement; iii) de son niveau de protection. Dénommé Indice de Spécificité dans ce document, ce rapport constitue un bon outil de suivi et de comparaison des aires protégées. Il a été utilisé pour comparer les situations observées dans les aires du réseau SUN avec celles prévalant dans les 33 autres parcs nationaux du domaine soudanien d¿Afrique sub-saharienne.JRC.DDG.H.3-Global environement monitorin

    Manual del usuario para la herramienta del CCI de validación del cambio en la cobertura vegetal/ocupación del suelo

    Get PDF
    El proyecto TREES-3 del CCI tiene por objeto estimar los cambios en la cobertura forestal a nivel continental y regional para el cinturón tropical y para los períodos 1990-2000 y 2000-(2005)-2010 basándose en una muestra sistemática de los mapas de cambios en la cobertura forestal. Se ha desarrollado un sistema para el tratamiento y evaluación de los cambios en la cobertura vegetal a partir de un amplio conjunto de datos de imágenes de resolución media multitemporales (unidades de muestra de 20 km x 20 km analizadas a partir de imágenes del satélite Landsat). La principal tarea es evaluar, de la manera más exacta posible y para cada unidad de muestra, la cobertura forestal y el cambio en esta entre dos fechas. El análisis incluye un paso final crucial consistente en la verificación visual y la asignación final de etiquetas de cobertura vegetal, efectuado por funcionarios nacionales responsables de los bosques o expertos en teledetección de los países tropicales. La interpretación visual se lleva a cabo de manera interdependiente en imágenes de dos fechas a fin de verificar y ajustar las etiquetas preasignadas a cada segmento para las diferentes fechas. Con esta finalidad se ha desarrollado una aplicación dedicada autónoma. La aplicación es una interfaz gráfica de usuario denominada «herramienta del CCI de validación del cambio en la cobertura vegetal», cuya finalidad es proporcionar una interfaz de fácil manejo con un conjunto optimizado de órdenes para navegar por un conjunto de datos de imágenes de satélite y mapas de la cobertura vegetal, evaluarlos y corregir fácilmente las etiquetas de ocupación del suelo según corresponda. En esta tarea la FAO está colaborando con el CCI en el marco del “Global Forest Resource Assessment (FRA) Remote Sensing Survey”. El CCI añadió funcionalidades a esta herramienta para permitir el etiquetado de clases de ocupación del suelo que forman parte de la clasificación FRA. El presente documento técnico, titulado «Manual de instrucciones para la herramienta del CCI de validación del cambio en la cobertura vegetal/ocupación del suelo» (JRC Land Cover/Use Change Validation Tool) describe el procedimiento de instalación de la herramienta en un ordenador personal, así como las características detalladas de la interfaz gráfica de usuario. Los autores agradecen las aportaciones de los usuarios de la herramienta, especialmente la información respecto a cualquier problema de software o las sugerencias para la mejora de futuras versiones.JRC.H.3-Forest Resources and Climat

    User Manual for the JRC Land Cover/Use Change Validation Tool

    Get PDF
    The JRC TREES-3 project aims at estimating forest cover changes at continental and regional levels for the Tropical belt for the periods 1990-2000 and 2000-(2005)-2010 based on a systematic sample of forest cover change maps. An operational system has been developed for the processing and change assessment of a large data set of multi-temporal medium resolution imagery (sample units of 20 km x 20 km size analysed from with Landsat imagery). The main task is to assess as accurately as possible for each sample unit the forest cover and forest cover change between two dates. The analysis includes a crucial final step of visual verification and final assignment of land cover labels which is carried out by forestry national officers or remote sensing experts from tropical countries. The visual interpretation is conducted interdependently on two-date imagery to verify and to adjust the labels pre-assigned to each segment for the different dates. A dedicated stand-alone application has been developed for this purpose. The application is a graphical user interface, called the JRC Land Cover/Use Change Validation Tool. The aim of this tool is to provide a user-friendly interface, with an optimised set of commands to navigate through and assess a given dataset of satellite imagery and land cover maps, and to correct easily the land-cover labels as appropriate. The present technical document, entitled ¿User Manual for the JRC Land Cover Change Validation Tool¿ describes the steps for the installation of the tool on a personal computer, as well as the detailed features of this dedicated graphical user interface. The authors welcome feedbacks from potential users of the tool, in particular reporting of any potential software issue or providing suggestions for improvements of future versions of the tool.JRC.DDG.H.3-Global environement monitorin

    Manuel d'utilisation de l'outil du CCR pour la validation des changements du couvert végétal / de l'utilisation des terres

    Get PDF
    Le projet TREES-3 du CCR a pour objectif d¿estimer les changements dans le couvert forestier aux échelles continentales et régionales dans les régions tropicales qui sont survenus au cours des années 1990 à 2000 et 2000 à (2005)-2010 sur la base d¿un échantillon systématique de cartes révélant les changements du couvert forestier. Un système opérationnel a été mis au point pour traiter et évaluer les changements dans un grand nombre de sites à partir d¿images multi-temporelles de moyenne résolution spatiale (unités d¿échantillonnage de 20 km x 20 km analysées à partir d¿images Landsat). L¿objectif principal est d¿évaluer le plus précisément possible, pour chaque unité d¿échantillonnage, le couvert forestier et le changement dans celui-ci entre deux dates. L¿analyse comprend une étape ultime d¿une importance cruciale qui consiste à vérifier visuellement et à attribuer l¿identification finale des couverts végétaux. Cette dernière étape est confiée aux soins d¿agents forestiers nationaux ou d¿experts en télédétection, issus de pays tropicaux. L¿interprétation visuelle s¿effectue de manière interdépendante à partir d¿images pris à deux dates différentes afin de vérifier et d¿ajuster les classes de végétation préalablement attribuées à chaque segment aux différentes dates. Une application autonome a été spécialement conçue à cette fin. Dénommée «Outil du CCR pour la validation des changements du couvert végétal», cette application est une interface utilisateur graphique conviviale dont la série optimisée de commandes permet, d¿une part, de naviguer à des fins d¿évaluation dans un ensemble d¿images satellitaires et de cartes représentant le couvert végétal et, d¿autre part, de corriger aisément, le cas échéant, les classes de couvert végétal. La FAO collabore avec le CCR à ce travail dans le cadre de l¿enquête par télédétection qui est menée à bien au titre de l¿évaluation des ressources forestières mondiales (FRA). Le CCR a ajouté à l¿outil une fonctionnalité qui permet aussi d¿étiqueter les classes d¿utilisation des terres qui relèvent de la classification utilisée par la FAO. Le présent document, intitulé «Manuel d¿utilisation de l¿outil du CCR pour la validation des changements du couvert végétal / de l¿utilisation des terres», explique la procédure à suivre pour installer le logiciel sur un ordinateur personnel et décrit en détail les caractéristiques de cette interface utilisateur graphique spécifique. Les auteurs remercient d¿ores et déjà les utilisateurs potentiels de l¿outil de bien vouloir leur faire part de leurs commentaires et en particulier de les tenir informés de tout problème logiciel éventuel ou de leur faire parvenir toute suggestion d¿améliorations pour les futures versions de l¿outil.JRC.DDG.H.3-Global environement monitorin

    Manual de utilização de ferramenta do Centro Comum de Investigação para validação das mudanças da cobertura vegetal e do uso da terra

    Get PDF
    O projeto TREES-3 do CCI tem como objetivo avaliar mudanças da cobertura vegetal na região tropical que ocorreram entre 1990 e 2000, e entre 2000-(2005)-2010. Para isto, foram processadas e avaliadas mudanças da cobertura vegetal em uma grande quantidade de imagens de satélite multi-temporais de resolução espacial média (unidades amostrais de 20 km x 20 km de imagens Landsat). Desta forma, o projeto TREES-3 busca avaliar para cada uma das unidades amostrais a cobertura florestal e as mudanças da cobertura vegetal ocorrida num quinquénio ou década com a mais alta precisão possível. A análise da mudança da cobertura vegetal e do uso da terra inclui também uma etapa de validação visual da classificação das imagens de satélite para atribuir as classes definitivas. Para esta etapa, o CCI desenvolveu uma ferramenta computacional chamada ‘‘Ferramenta do CCI para validação das mudanças da cobertura vegetal e do uso da terra’’. Esta ferramenta é utilizada por agentes florestais nacionais ou especialistas em sensoriamento remoto provenientes de países tropicais. Nesta ferramenta, a interpretação visual das imagens de satélite é efetuada de maneira simultânea utilizando imagens de dois períodos diferentes. Desta forma, é possível verificar e ajustar classes de uso da terra que foram previamente definidas. Neste trabalho, a FAO colabora com o CCI no âmbito do projeto de levantamento por sensoriamento remoto para avaliação dos recursos florestais mundiais (FRA). O CCI agregou na ferramenta computacional uma função que permite atribuir classes de uso da terra que fazem parte da classificação utilizada pela FAO. O presente documento, intitulado ‘‘Manual de utilização de ferramenta do Centro Comum de Investigação para validação das mudanças da cobertura vegetal e do uso da terra”, explica o procedimento para instalação da ferramenta e descreve as características da interface gráfica do usuário.JRC.H.3-Forest Resources and Climat

    Land Cover Change Monitoring Using Landsat MSS/TM Satellite Image Data over West Africa between 1975 and 1990

    Get PDF
    Abstract: Monitoring land cover changes from the 1970s in West Africa is important for assessing the dynamics between land cover types and understanding the anthropogenic impact during this period. Given the lack of historical land cover maps over such a large area, Landsat data is a reliable and consistent source of information on land cover dynamics from the 1970s. This study examines land cover changes occurring between 1975 and 1990 in West Africa using a systematic sample of satellite imagery. The primary data sources for the land cover classification were Landsat Multispectral Scanner (MSS) for 1975 and Landsat Thematic Mapper (TM) for the 1990 period. Dedicated selection of the appropriate image data for land cover change monitoring was performed for the year 1975. Based on this selected dataset, the land cover analysis is based on a systematic sample of 220 suitable Landsat image extracts (out of 246) of 20 km × 20 km at each one degree latitude/longitude intersection. Object-based classification, originally dedicated for Landsat TM land cover change monitoring and adapted for MSS, was used to produce land cover change information for four different land cover classes: dense tree cover, tree cover mosaic, other wooded land and other vegetation cover. Our results reveal that in 1975 about 6% of West Africa was covered by dense tree cover complemented with 12% of tree cover mosaic. Almost half of the area was covered by other wooded land and the remaining 32% was represented by other vegetation cover. Over the 1975–1990 period, the net annual change rate of dense tree cover was estimated at −0.95%, at −0.37% for the other wooded land and very low for tree cover mosaic (−0.05%). On the other side, other vegetation cover increased annually by 0.70%, most probably due to the expansion of agricultural areas. This study demonstrates the potential of Landsat MSS and TM data for large scale land cover change assessment in West Africa and highlights the importance of consistent and systematic data processing methods with targeted image acquisition procedures for long-term monitoring.JRC.H.5-Land Resources Managemen

    Fire Activity Inside and Outside Protected Areas in Sub-Saharan Africa: A Continental Analysis of Fire and its Implications for Biodiversity and Land Management

    Get PDF
    Fire is an important ecological factor in many natural ecosystems. Without doubt one of the biomes with the highest fire activity in the world is the African savannah. Savannahs have evolved with fires since climate in these regions is characterized by definite dry and wet seasons that create the conditions for burning. During the wet months the herbaceous vegetation shows a quick growth, followed by a long dry period during which the abundant build-up of fine materials becomes highly flammable and most of fires occur. Animals and plants are adapted to these conditions and their lives depend on recurrent fires. In this context fire becomes an essential element to promote biodiversity and nature conservation. Park managers are using programmed fires as a tool to maintain the habitats and favorable conditions to the animal communities. Satellite products like burned areas and active fire maps are a valuable mean to analyze the fire activity and provide support to experts working for conservation and natural resource management. In the framework of the Digital Observatory for Protected Areas (DOPA), the MONDE group (Monitoring Natural Resources for Development) of the Joint Research Centre of the European Commission is using satellite products to analyze the fire occurrence and its effects on protected areas located in sub-Saharan Africa. Information on the fire activity was derived from the MODIS fire products (active fires and burned areas) and allows the DOPA to provide support to park managers as well as to experts working for conservation and natural resource management. We assessed 741 protected areas classified by the IUCN (International Union for Conservation of Nature) with a level of protection between class I and IV. The MODIS datasets are available since the year 2000 and were used to characterize the spatio-temporal distribution of fires over a period of 10 years. Information on fire activity was extracted for the protected areas and a 25km buffer zone around each of them. The region outside the protected areas was used for comparison in order to identify differences or similarities between their fire activities. This also contributed to understand how management and conservation influence fire and assess the level of isolation of the protected areas. The long time series allowed the identification of trends and the interannual variability in the fire activity. The dry season length was determined using FEWS RFE rainfall data (implemented at NOAA's Climate Prediction Center). Within each dry season we identified three periods (early, middle and late) in order to characterize the climatic and environmental conditions at which fires occur and identify trends and patterns. Every period of the dry season lasts two months and shows different conditions of temperature and drought level. Fire activity was characterized combining the information on active fires and burned areas. For each year we determined the fire seasonality, the fire frequency, the main vegetation types affected, the extent and intensity of burning. This information was also used to distinguish management fires from those related to other human activities like transhumance, agriculture and poaching in order to identify possible sources of threat to the protected areas. Information on the road network, the location of villages and cultivated fields were also included. Future work will include a combined analysis of fire activity and land-cover, land-cover change information so that management plans adopted in protected areas can be evaluated in their effectiveness to promote biodiversity and nature conservation.JRC.DDG.H.3-Global environement monitorin
    corecore