4,357 research outputs found
Nonlinear stability of pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions
We establish the existence and nonlinear stability of travelling pulse
solutions for the discrete FitzHugh-Nagumo equation with infinite-range
interactions close to the continuum limit. For the verification of the spectral
properties, we need to study a functional differential equation of mixed type
(MFDE) with unbounded shifts. We avoid the use of exponential dichotomies and
phase spaces, by building on a technique developed by Bates, Chen and Chmaj for
the discrete Nagumo equation. This allows us to transfer several crucial
Fredholm properties from the PDE setting to our discrete setting
Brownian motion of Massive Particle in a Space with Curvature and Torsion and Crystals with Defects
We develop a theory of Brownian motion of a massive particle, including the
effects of inertia (Kramers' problem), in spaces with curvature and torsion.
This is done by invoking the recently discovered generalized equivalence
principle, according to which the equations of motion of a point particle in
such spaces can be obtained from the Newton equation in euclidean space by
means of a nonholonomic mapping. By this principle, the known Langevin equation
in euclidean space goes over into the correct Langevin equation in the Cartan
space. This, in turn, serves to derive the Kubo and Fokker-Planck equations
satisfied by the particle distribution as a function of time in such a space.
The theory can be applied to classical diffusion processes in crystals with
defects.Comment: LaTeX, http://www.physik.fu-berlin.de/kleinert.htm
Topological Aspect of Knotted Vortex Filaments in Excitable Media
Scroll waves exist ubiquitously in three-dimensional excitable media. It's
rotation center can be regarded as a topological object called vortex filament.
In three-dimensional space, the vortex filaments usually form closed loops, and
even linked and knotted. In this letter, we give a rigorous topological
description of knotted vortex filaments. By using the -mapping
topological current theory, we rewrite the topological current form of the
charge density of vortex filaments and use this topological current we reveal
that the Hopf invariant of vortex filaments is just the sum of the linking and
self-linking numbers of the knotted vortex filaments. We think that the precise
expression of the Hopf invariant may imply a new topological constraint on
knotted vortex filaments.Comment: 4 pages, no figures, Accepted by Chin. Phys. Let
Constraints on the sources of branched tetraether membrane lipids in distal marine sediments
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids produced by soil bacteria and occur in near coastal marine sediments as a result of soil organic matter input. Their abundance relative to marine-derived crenarchaeol, quantified in the BIT index, generally decreases offshore. However, in distal marine sediments, low relative amounts of brGDGTs can often still be observed. Sedimentary in situ production as well as dust input have been suggested as potential, though as yet not well constrained, sources. In this study brGDGT distributions in dust were examined and compared with those in distal marine sediments. Dust was sampled along the equatorial West African coast and brGDGTs were detected in most of the samples, albeit in low abundance. Their degree of methylation and cyclisation, expressed in the MBT' (methylation index of branched tetraethers) and DC (degree of cyclisation) indices, respectively, were comparable with those for African soils, their presumed source. Comparison of DC index values for brGDGTS in global soils, Congo deep-sea river fan sediments and dust with those of distal marine sediments clearly showed, however, that distal marine sediments had significantly higher values. This distinctive distribution is suggestive of sedimentary in situ production as a source of brGDGTs in marine sediments, rather than dust input. The presence of in situ produced brGDGTs in marine sediments means that caution should be exercised when applying the MBT'–CBT palaeothermometer to sediments with low BIT index values, i.e. < 0.1, based on our dataset
The constitutive tensor of linear elasticity: its decompositions, Cauchy relations, null Lagrangians, and wave propagation
In linear anisotropic elasticity, the elastic properties of a medium are
described by the fourth rank elasticity tensor C. The decomposition of C into a
partially symmetric tensor M and a partially antisymmetric tensors N is often
used in the literature. An alternative, less well-known decomposition, into the
completely symmetric part S of C plus the reminder A, turns out to be
irreducible under the 3-dimensional general linear group. We show that the
SA-decomposition is unique, irreducible, and preserves the symmetries of the
elasticity tensor. The MN-decomposition fails to have these desirable
properties and is such inferior from a physical point of view. Various
applications of the SA-decomposition are discussed: the Cauchy relations
(vanishing of A), the non-existence of elastic null Lagrangians, the
decomposition of the elastic energy and of the acoustic wave propagation. The
acoustic or Christoffel tensor is split in a Cauchy and a non-Cauchy part. The
Cauchy part governs the longitudinal wave propagation. We provide explicit
examples of the effectiveness of the SA-decomposition. A complete class of
anisotropic media is proposed that allows pure polarizations in arbitrary
directions, similarly as in an isotropic medium.Comment: 1 figur
Real-time detection of single electron tunneling using a quantum point contact
We observe individual tunnel events of a single electron between a quantum
dot and a reservoir, using a nearby quantum point contact (QPC) as a charge
meter. The QPC is capacitively coupled to the dot, and the QPC conductance
changes by about 1% if the number of electrons on the dot changes by one. The
QPC is voltage biased and the current is monitored with an IV-convertor at room
temperature. We can resolve tunnel events separated by only 8 s, limited
by noise from the IV-convertor. Shot noise in the QPC sets a 25 ns lower bound
on the accessible timescales.Comment: 3 pages, 3 figures, submitte
Autoparallels From a New Action Principle
We present a simpler and more powerful version of the recently-discovered
action principle for the motion of a spinless point particle in spacetimes with
curvature and torsion. The surprising feature of the new principle is that an
action involving only the metric can produce an equation of motion with a
torsion force, thus changing geodesics to autoparallels. This additional
torsion force arises from a noncommutativity of variations with parameter
derivatives of the paths due to the closure failure of parallelograms in the
presence of torsionComment: Paper in src. Author Information under
http://www.physik.fu-berlin.de/~kleinert/institution.html Read paper directly
with Netscape under
http://www.physik.fu-berlin.de/~kleinert/kleiner_re243/preprint.htm
Holocene subsurface temperature variability in the eastern Antarctic continental margin
We reconstructed subsurface (∼45-200m water depth) temperature variability in the eastern Antarctic continental margin during the late Holocene, using an archaeal lipid-based temperature proxy (TEX 86 L). Our results reveal that subsurface temperature changes were probably positively coupled to the variability of warmer, nutrient-rich Modified Circumpolar Deep Water (MCDW, deep water of the Antarctic circumpolar current) intrusion onto the continental shelf. The TEX 86 L record, in combination with previously published climatic records, indicates that this coupling was probably related to the thermohaline circulation, seasonal variability in sea ice extent, sea temperature, and wind associated with high frequency climate dynamics at low-latitudes such as internal El Nio Southern Oscillation (ENSO). This in turn suggests a linkage between centennial ENSO-like variability at low-latitudes and intrusion variability of MCDW into the eastern Antarctic continental shelf, which might have further impact on ice sheet evolution. Copyright 2012 by the American Geophysical Union
- …