103 research outputs found

    1-Alpha, 25-dihydroxyvitamin D3 alters the pharmacokinetics of mycophenolic acid in renal transplant recipients by regulating two extrahepatic UDP-glucuronosyltransferases 1A8 and 1A10

    Get PDF
    Mycophenolic acid (MPA) is an important immunosuppressant broadly used in renal transplantation. However, the large inter-patient variability in mycophenolic acid (MPA) pharmacokinetics (PK) limits its use. We hypothesize that extrahepatic metabolism of MPA may have significant impact on MPA PK variability. Two intestinal UDP-glucuronosyltransferases 1A8 and 1A10 plays critical role in MPA metabolism. Both in silico and previous genome-wide analyses suggested that vitamin D (VD) may regulate intestinal UGT1A expression. We validated the VD response elements (VDREs) across the UGT1A locus with chromatin immunoprecipitation (ChIP) and luciferase reporter assays. The impact of 1-alpha,25-dihydroxyvitamin D3 (D3) on UGT1A8 and UGT1A10 transcription and on MPA glucuronidation was tested in human intestinal cell lines LS180, Caco-2 and HCT-116. The correlation between transcription levels of VD receptor (VDR) and the two UGT genes were examined in human normal colorectal tissue samples (n = 73). PK alterations of MPA following the parent drug, mycophenolate mofetil (MMF), and D3 treatment was assessed among renal transplant recipients (n = 10). Our ChIP assay validate three VDREs which were further demonstrated as transcriptional enhancers with the luciferase assays. D3 treatment significantly increased transcription of both UGT genes as well as MPA glucuronidation in cells. The VDR mRNA level was highly correlated with that of both UGT1A8 and UGT1A10 in human colorectal tissue. D3 treatment in patients led to about 40% reduction in both AUC0-12 and Cmax while over 70% elevation of total clearance of MPA. Our study suggested a significant regulatory role of VD on MPA metabolism and PK via modulating extrahepatic UGT activity

    Determination of composition and structure of spongy bone tissue in human head of femur by Raman spectral mapping

    Get PDF
    Biomechanical properties of bone depend on the composition and organization of collagen fibers. In this study, Raman microspectroscopy was employed to determine the content of mineral and organic constituents and orientation of collagen fibers in spongy bone in the human head of femur at the microstructural level. Changes in composition and structure of trabecula were illustrated using Raman spectral mapping. The polarized Raman spectra permit separate analysis of local variations in orientation and composition. The ratios of ν2PO43−/Amide III, ν4PO43−/Amide III and ν1CO32−/ν2PO43− are used to describe relative amounts of spongy bone components. The ν1PO43−/Amide I ratio is quite susceptible to orientation effect and brings information on collagen fibers orientation. The results presented illustrate the versatility of the Raman method in the study of bone tissue. The study permits better understanding of bone physiology and evaluation of the biomechanical properties of bone

    Genetic causes of hypercalciuric nephrolithiasis

    Get PDF
    Renal stone disease (nephrolithiasis) affects 3–5% of the population and is often associated with hypercalciuria. Hypercalciuric nephrolithiasis is a familial disorder in over 35% of patients and may occur as a monogenic disorder that is more likely to manifest itself in childhood. Studies of these monogenic forms of hypercalciuric nephrolithiasis in humans, e.g. Bartter syndrome, Dent’s disease, autosomal dominant hypocalcemic hypercalciuria (ADHH), hypercalciuric nephrolithiasis with hypophosphatemia, and familial hypomagnesemia with hypercalciuria have helped to identify a number of transporters, channels and receptors that are involved in regulating the renal tubular reabsorption of calcium. Thus, Bartter syndrome, an autosomal disease, is caused by mutations of the bumetanide-sensitive Na–K–Cl (NKCC2) co-transporter, the renal outer-medullary potassium (ROMK) channel, the voltage-gated chloride channel, CLC-Kb, the CLC-Kb beta subunit, barttin, or the calcium-sensing receptor (CaSR). Dent’s disease, an X-linked disorder characterized by low molecular weight proteinuria, hypercalciuria and nephrolithiasis, is due to mutations of the chloride/proton antiporter 5, CLC-5; ADHH is associated with activating mutations of the CaSR, which is a G-protein-coupled receptor; hypophosphatemic hypercalciuric nephrolithiasis associated with rickets is due to mutations in the type 2c sodium–phosphate co-transporter (NPT2c); and familial hypomagnesemia with hypercalciuria is due to mutations of paracellin-1, which is a member of the claudin family of membrane proteins that form the intercellular tight junction barrier in a variety of epithelia. These studies have provided valuable insights into the renal tubular pathways that regulate calcium reabsorption and predispose to hypercalciuria and nephrolithiasis

    Relationship Between Osteonecrosis of the Jaw and Bisphosphonate Treatment

    Get PDF
    Terapija bisfosfonatima i njezina etiopatogenetska povezanost s aseptičkom osteonekrozom čeljusti važan je javnozdravstveni problem današnjice. Svrha je rada pregledom suvremene znanstvene literature utvrditi posljedice višestrukog djelovanja bisfosfonata (antiosteoklastična aktivnost, citotoksičnost na meka i koštana tkiva, antiangiogeneza, genski čimbenici, poremećena ravnoteža između osteoklasta i osteoblasta). Terapija bisfosfonatima jedan je od najčešćih uzroka razvoja osteonekroze čeljusti. Epidemiološki podaci pokazuju da se javlja u bolesnika koji su uzimali jedan ili kombinanciju nitrogenih bisfosfonata. Najvažniji čimbenici rizika za ovu nuspojavu su vrsta bisfosfonata (napose visokopotentni pamidronat i zoledronat koji se daju intravenski), njihova doza i duljina medikacije te vrsta bolesti zbog koje se propisuje terapija. Pojava osteonekroze čeljusti zabilježena je uglavnom u onkoloških bolesnika i u samo 5 % bolesnika s osteoporozom koji su liječeni bisfosfonatima. U patogenezi osteonekroze povezane s bisfosfonatima važno je, sa stajališta dentalnomedicinske prakse, dobro opće oralno zdravlje jer se osteonekroza javlja napose nakon prethodnoga parodontološkog i oralnokirurškog zahvata.Bisphosphonate treatment and its aetiopathogenic association with aseptic osteonecrosis of the jaw is one of the more prominent public health issues today. The aim of this review is to see into the mechanisms of bisphosphonate effects on bones described in literature (anti-osteoclastic activity, cytotoxicity, antiangiogenesis, genetic factors, and imbalance between osteoclasts and osteoblasts). Bisphosphonate treatment is the dominant cause of jaw necrosis. Epidemiological data show an exclusive incidence of osteonecrosis of the jaw in patients who took one or a combination of nitrogen-containing bisphosphonates. Risk factors vary by the bisphosphonate potency (particularly risky are the highly potent pamidronate and zoledronate, which are given intravenously), dosage, duration of treatment, and the illness. Jaw necrosis is most common in oncology patients, and only 5 % in patients with osteoporosis. From a dental-medical point of view, a good oral health is important because osteonecrosis often appears after a periodontal or oral surgical procedure

    Major Factors Affecting Incidence of Childhood Thyroid Cancer in Belarus after the Chernobyl Accident: Do Nitrates in Drinking Water Play a Role?

    Get PDF
    One of the major health consequences of the Chernobyl Nuclear Power Plant accident in 1986 was a dramatic increase in incidence of thyroid cancer among those who were aged less than 18 years at the time of the accident. This increase has been directly linked in several analytic epidemiological studies to iodine-131 (131I) thyroid doses received from the accident. However, there remains limited understanding of factors that modify the 131Irelated risk. Focusing on post-Chernobyl pediatric thyroid cancer in Belarus, we reviewed evidence of the effects of radiation, thyroid screening, and iodine deficiency on regional differences in incidence rates of thyroid cancer. We also reviewed current evidence on content of nitrate in groundwater and thyroid cancer risk drawing attention to high levels of nitrates in open well water in several contaminated regions of Belarus, i.e. Gomel and Brest, related to the usage of nitrogen fertilizers. In this hypothesis generating study, based on ecological data and biological plausibility, we suggest that nitrate pollution may modify the radiationrelated risk of thyroid cancer contributing to regional differences in rates of pediatric thyroid cancer in Belarus. Analytic epidemiological studies designed to evaluate joint effect of nitrate content in groundwater and radiation present a promising avenue of research and may provide useful insights into etiology of thyroid cancer
    corecore