245 research outputs found

    The influence of multilayer metal-carbon coatings composition with different arrangement of functional layers on their surface morphology

    Full text link
    This research was supported by the grants of Belarussian Republican Foundation for Fundamental Research BRFFR № T17KIG-009

    Absolute quantum yield measurements of fluorescent proteins using a plasmonic nanocavity

    Get PDF
    One of the key photophysical properties of fluorescent proteins that is most difficult to measure is the quantum yield. It describes how efficiently a fluorophore converts absorbed light into fluorescence. Its measurement using conventional methods become particularly problematic when it is unknown how many of the proposedly fluorescent molecules of a sample are indeed fluorescent (for example due to incomplete maturation, or the presence of photophysical dark states). Here, we use a plasmonic nanocavity-based method to measure absolute quantum yield values of commonly used fluorescent proteins. The method is calibration-free, does not require knowledge about maturation or potential dark states, and works on minute amounts of sample. The insensitivity of the nanocavity-based method to the presence of non-luminescent species allowed us to measure precisely the quantum yield of photo-switchable proteins in their on-state and to analyze the origin of the residual fluorescence of protein ensembles switched to the dark state

    Влияние температуры от 20 до 100 °С на удельную поверхностную энергию и вязкость разрушения пластин кремния

    Get PDF
    The influence of temperature in the range from 20 to 100 °C on the specific surface energy and fracture toughness of standard silicon wafers of three orientations (100), (110) and (111) was studied. Silicon wafers were heated on a special thermal platform with an autonomous heating controller, which was installed under the samples. At each temperature, the samples were kept for 10 min. The specific surface energy γ after exposure to temperature was determined by atomic force microscopy (AFM). Fracture toughness during and after exposure to temperature was determined by indentation followed by visualization of the deformation region using AFM. It has been established that the specific surface energy γ of Si wafers with orientation (100) and (111) increases with increasing temperature from 20 to 100 °C, and for orientation (110) it increases at temperatures from 20 to 80 °C, and then decreases. The diagonal length d of indentation marks, performed both during the heating process and after heating, decreases by increasing the temperature from 20 to 100 °C. The crack length c decreases on silicon wafers during indentation during heating from 20 to 100 °C, and after exposure to temperature, the length increases. When the plates are exposed to temperature, the fracture toughness KIC increases with increasing temperature: for orientation (100) – up to 1.61 ± 0.08 MPa·m1/2, for (110) – up to 1.60 ± 0.08 MPa·m1/2 and for (111) – up to 1.66 ± 0.04 MPa·m1/2. A direct correlation was established between KIC, measured during  exposure to temperature, and an inverse correlation between KIC measured after exposure to temperature and specific surface energy for the (100) and (111) orientations. An inverse correlation was obtained by KIC at the (110) orientation when exposed to temperatures of 20–40 and 80–100 °C, and after exposure, a direct correlation was obtained. At 60 °C there is no correlation. The results obtained can be used to improve the mechanical properties of silicon wafers used in solar cells and microelectromechanical systems (operating at temperatures up to 100 °C).Проведены исследования влияния температуры в диапазоне от 20 до 100 °С на удельную поверхностную энергию и вязкость разрушения стандартных пластин кремния трёх ориентаций (100), (110) и (111). Пластины кремния нагревали на специальной термоплатформе с автономным контроллером нагрева, которую устанавливали под образцы. При каждой температуре образцы выдерживали в течении 10 мин. Удельная поверхностная энергия γ после воздействия температуры определялась методом атомно-силовой микроскопии (АСМ). Вязкость разрушения во время и после воздействия температуры определялась методом индентирования с последующей визуализацией области деформации методом АСМ. Установлено, что удельная поверхностная энергия γ пластин кремния ориентации (100) и (111) увеличивается с увеличением температуры от 20 до 100 °С, у ориентации (110) – увеличивается при температурах от 20 до 80 °С, а затем снижается. Длина диагонали d отпечатков индентирования, выполняемых как в процессе нагрева, так и после нагрева, уменьшается с увеличением температуры от 20 до 100 °С. Длина трещин c уменьшается на пластинах кремния при индентировании во время нагрева от 20 до 100 °С, а после воздействия температуры длина увеличивается. Во время воздействия температуры на пластины вязкость разрушения KIC увеличивается с увеличением температуры: для ориентации (100) – 1,61 ± 0,08 MПa·м1/2, для (110) – до 1,60 ± 0,08 MПa·м1/2 и для (111) – до 1,66 ± 0,04 MПa·м1/2. Установлена прямая корреляция KIC , измеренной во время воздействия температуры, и обратная корреляция KIC , измеренной после воздействия температуры, c удельной поверхностной энергией для ориентаций (100) и (111). Обратная корреляция KIC с γ получена на ориентации (110) при воздействии температур 20–40 и 80–100 °С, а после воздействия – прямая корреляция. При 60 °С корреляции нет. Полученные результаты могут быть использованы для улучшения механических свойств кремниевых пластин, используемых в солнечных элементах и микроэлектромеханических системах (работающих при температурах до 100 °С)

    Influence of Temperature from 20 to 100 °C on Specific Surface Energy and Fracture Toughness of Silicon Wafers

    Get PDF
    The influence of temperature in the range from 20 to 100 °C on the specific surface energy and fracture toughness of standard silicon wafers of three orientations (100), (110) and (111) was studied. Silicon wafers were heated on a special thermal platform with an autonomous heating controller, which was installed under the samples. At each temperature, the samples were kept for 10 min. The specific surface energy γ after exposure to temperature was determined by atomic force microscopy (AFM). Fracture toughness during and after exposure to temperature was determined by indentation followed by visualization of the deformation region using AFM. It has been established that the specific surface energy γ of Si wafers with orientation (100) and (111) increases with increasing temperature from 20 to 100 °C, and for orientation (110) it increases at temperatures from 20 to 80 °C, and then decreases. The diagonal length d of indentation marks, performed both during the heating process and after heating, decreases by increasing the temperature from 20 to 100 °C. The crack length c decreases on silicon wafers during indentation during heating from 20 to 100 °C, and after exposure to temperature, the length increases. When the plates are exposed to temperature, the fracture toughness KIC increases with increasing temperature: for orientation (100) – up to 1.61 ± 0.08 MPa·m1/2, for (110) – up to 1.60 ± 0.08 MPa·m1/2 and for (111) – up to 1.66 ± 0.04 MPa·m1/2. A direct correlation was established between KIC , measured during exposure to temperature, and an inverse correlation between KIC measured after exposure to temperature and specific surface energy for the (100) and (111) orientations. An inverse correlation was obtained by KIC at the (110) orientation when exposed to temperatures of 20–40 and 80–100 °C, and after exposure, a direct correlation was obtained. At 60 °C there is no correlation. The results obtained can be used to improve the mechanical properties of silicon wafers used in solar cells and microelectromechanical systems (operating at temperatures up to 100 °C)

    Determination of Crack Resistance of the Cover and Slide Glass by Indentation Method with the Visualization Using Atomic Force Microscopy

    Get PDF
    Crack resistance of two types of glass was studied – cover glass (0.17 mm thick) and slide glass (2 mm thick) using an improved technique through the use of the probe methods, which makes it possible to increase the accuracy of determining the crack resistance of glass. Colorless silicate glass was used. Crack resistance was determined by the Vickers pyramid indentation method. Microstructure of glasses surface and deformation region after indentation were studied using an atomic force microscope. Mechanical properties of glasses were determined by nanoindentation. Surface relief of a glass slide is rougher than that one of a cover glass. Roughness Rz for a cover glass is less than for a slide glass. Specific surface energy value of 0.26 N/m is higher for the slide glass compared to the coverslip. One elastic modulus value E of the cover glass is 48 GPa, and that one of the slide glass is 58 GPa. The microhardness value H is almost the same for by the glasses and amounts to 6.7 GPa for a slide glass and 6.4 GPa for a cover glass. Atomic force microscope images of deformation region after indentation with a Vickers pyramid show that the first cracks appear at a load of 1 N on the slide glass, and at 2 N on the cover glass. At a load of 3 N, the cover glass is destroyed. Based on the results of crack resistance calculations it was found that critical stress intensity coefficient KIC values are 1.42 MPa∙m1/2 for a glass slide, and 1.10 MPa∙m1/2 for a cover glass
    corecore