33 research outputs found

    Magnetic Anisotropy and Relaxation of Pseudotetrahedral [N2O2] Bis Chelate Cobalt II Single Ion Magnets Controlled by Dihedral Twist Through Solvomorphism

    Get PDF
    The methanol solvomorph 1 amp; 8201; amp; 8901; amp; 8201;2MeOH of the cobalt II complex [Co LSal,2 amp; 8722;Ph 2] 1 with the sterically demanding Schiff base ligand 2 [1,1 amp; 8242; biphenyl] 2 ylimino methyl phenol HLSal,2 amp; 8722;Ph shows the thus far largest dihedral twist distortion between the two chelate planes compared to an ideal pseudotetrahedral arrangement. The cobalt II ion in 1 amp; 8201; amp; 8901; amp; 8201;2MeOH exhibits an easy axis anisotropy leading to a spin reversal barrier of 55.3 amp; 8197;cm amp; 8722;1, which corresponds to an increase of about 17 amp; 8201; induced by the larger dihedral twist compared to the solvent free complex 1. The magnetic relaxation for 1 amp; 8201; amp; 8901; amp; 8201;2MeOH is significantly slower compared to 1. An in depth frequency domain Fourier transform FD FT THz EPR study not only allowed the direct measurement of the magnetic transition between the two lowest Kramers doublets for the cobalt II complexes, but also revealed the presence of spin phonon coupling. Interestingly, a similar dihedral twist correlation is also observed for a second pair of cobalt II based solvomorphs, which could be benchmarked by FD FT THz EP

    Kinetic analysis of the partial synthesis of artemisinin: Photooxygenation to the intermediate hydroperoxide

    Get PDF
    The price of the currently best available antimalarial treatment is driven in large part by the limited availability of its base drug compound artemisinin. One approach to reduce the artemisinin cost is to efficiently integrate the partial synthesis of artemisinin starting from its biological precursor dihydroartemisinic acid (DHAA) into the production process. The optimal design of such an integrated process is a complex task that is easier to solve through simulations studies and process modelling. In this article, we present a quantitative kinetic model for the photooxygenation of DHAA to an hydroperoxide, the essential initial step of the partial synthesis to artemisinin. The photooxygenation reactions were studied in a two-phase photo-flow reactor utilizing Taylor flow for enhanced mixing and fast gas-liquid mass transfer. A good agreement of the model and the experimental data was achieved for all combinations of photosensitizer concentration, photon flux, fluid velocity and both liquid and gas phase compositions. Deviations between simulated predictions and measurements for the amount of hydroperoxide formed are 7.1 % on average. Consequently, the identified and parameterized kinetic model is exploited to investigate different behaviors of the reactor under study. In a final step, the kinetic model is utilized to suggest attractive operating windows for future applications of the photooxygenation of DHAA exploiting reaction rates that are not affected by mass transfer limitations

    Correction Magnetic relaxation in cobalt ii based single ion magnets influenced by distortion of the pseudotetrahedral [N2O2] coordination environment

    Get PDF
    Correction for Magnetic relaxation in cobalt II based single ion magnets influenced by distortion of the pseudotetrahedral [N2O2] coordination environment by Michael Böhme et al., Dalton Trans., 2018, 47, 10861 1087

    Authigenesis of native sulphur and dolomite in a lacustrine evaporitic setting (Hellin basin, Late Miocene, SE Spain)

    No full text
    Abundant sulphur is present in the Late Miocene evaporitic sequence of the lacustrine Hellín basin in SE Spain. Weathering of Triassic evaporites controlled the chemical composition of the Miocene lake. The lacustrine deposits comprise gypsum, marlstones, diatomites and carbonate beds. Sulphur-bearing carbonate deposits predominantly consist of early diagenetic dolomite. Abundant dolomite crystals with a spheroidal habit are in accordance with an early formation and point to a microbial origin. The carbon isotopic composition of the dolomite (δ13C values between −10 and −4‰) indicates mixing of lake water carbonate and carbonate derived from the remineralization of organic matter by heterotrophic bacteria. Dolomite precipitated syngenetically under evaporitic conditions as indicated by high oxygen isotope values (δ18O between +6 and +11‰). Nodules of native sulphur are found in gypsum, carbonate beds and marlstone layers. Sulphur formed in the course of microbial sulphate reduction, as reflected by its strong depletion in 34S (δ34S values as low as −17‰). Near to the surface many of the sulphur nodules were in part or completely substituted by secondary gypsum, which still reflects the sulphur isotopic composition of native sulphur (−18 to −10‰). This study exemplifies the role of bacterial sulphate reduction in the formation of dolomite and native sulphur in a semi-enclosed lacustrine basin during Late Miocene time

    Magnetic relaxation in cobalt II based single ion magnets influenced by distortion of the pseudotetrahedral [N2O2] coordination environment

    No full text
    Cobalt(ii) complexes with different dihedral angles between the bidentate ligands show a significant variation in their magnetic relaxation behavior.</p
    corecore