1,956 research outputs found

    The Perfect Quark-Gluon Vertex Function

    Get PDF
    We evaluate a perfect quark-gluon vertex function for QCD in coordinate space and truncate it to a short range. We present preliminary results for the charmonium spectrum using this quasi-perfect action.Comment: 3 pages LaTex, 4 figures, poster presented at LATTICE9

    On the relation between the width of the flux tube and Tc−1T_c^{-1} in lattice gauge theories

    Full text link
    Within the framework of a quantum flux tube model for the interquark potential it is possible to predict that in (2+1) dimensions the space-like string tension must increase with the temperature in the deconfined phase and that the thickness of the flux tube must coincide with the inverse of the deconfinement temperature. Both these predictions are in good agreement with some recent numerical simulations of SU(2) and Z2Z_2 gauge models.Comment: 3 pages, uuencoded .ps file (Proceeding of Lattice '93 Conference

    Bottomonium from NRQCD with Dynamical Wilson Fermions

    Full text link
    We present results for the b \bar b spectrum obtained using an O(M_bv^6)-correct non-relativistic lattice QCD action. Propagators are evaluated on SESAM's three sets of dynamical gauge configurations generated with two flavours of Wilson fermions at beta = 5.6. Compared to a quenched simulation at equivalent lattice spacing we find better agreement of our dynamical data with experimental results in the spin-independent sector but observe no unquenching effects in hyperfine-splittings. To pin down the systematic errors we have also compared quenched results in different ``tadpole'' schemes and used a lower order action.Comment: Talk presented at LATTICE'97, 3 pages, Late

    Casimir scaling or flux counting?

    Get PDF
    Potentials between two static sources in various representations of the SU(3) gauge group are determined on anisotropic 3+1 dimensional lattices. Strong evidence in favour of "Casimir scaling" is found.Comment: 4 pages Latex, epscrc2.sty with 2 epsf figure

    Unquenching effects on the coefficients of the L\"uscher-Weisz action

    Get PDF
    The effects of unquenching on the perturbative improvement coefficients in the Symanzik action are computed within the framework of L\"uscher-Weisz on-shell improvement. We find that the effects of quark loops are surprisingly large, and their omission may well explain the scaling violations observed in some unquenched studies.Comment: 7 pages, 5 figures, uses revtex4; version to appear in Phys.Rev.

    Update: Accurate Determinations of alpha_s from Realistic Lattice QCD

    Full text link
    We use lattice QCD simulations, with MILC configurations (including vacuum polarization from u, d, and s quarks), to update our previous determinations of the QCD coupling constant. Our new analysis uses results from 6 different lattice spacings and 12 different combinations of sea-quark masses to significantly reduce our previous errors. We also correct for finite-lattice-spacing errors in the scale setting, and for nonperturbative chiral corrections to the 22 short-distance quantities from which we extract the coupling. Our final result is alpha_V(7.5GeV,nf=3) = 0.2120(28), which is equivalent to alpha_msbar(M_Z,n_f=5)= 0.1183(8). We compare this with our previous result, which differs by one standard deviation.Comment: 12 pages, 2 figures, 4 table

    Adjoint "quarks" on coarse anisotropic lattices: Implications for string breaking in full QCD

    Get PDF
    A detailed study is made of four dimensional SU(2) gauge theory with static adjoint ``quarks'' in the context of string breaking. A tadpole-improved action is used to do simulations on lattices with coarse spatial spacings asa_s, allowing the static potential to be probed at large separations at a dramatically reduced computational cost. Highly anisotropic lattices are used, with fine temporal spacings ata_t, in order to assess the behavior of the time-dependent effective potentials. The lattice spacings are determined from the potentials for quarks in the fundamental representation. Simulations of the Wilson loop in the adjoint representation are done, and the energies of magnetic and electric ``gluelumps'' (adjoint quark-gluon bound states) are calculated, which set the energy scale for string breaking. Correlators of gauge-fixed static quark propagators, without a connecting string of spatial links, are analyzed. Correlation functions of gluelump pairs are also considered; similar correlators have recently been proposed for observing string breaking in full QCD and other models. A thorough discussion of the relevance of Wilson loops over other operators for studies of string breaking is presented, using the simulation results presented here to support a number of new arguments.Comment: 22 pages, 14 figure

    High-precision determination of the light-quark masses from realistic lattice QCD

    Full text link
    Three-flavor lattice QCD simulations and two-loop perturbation theory are used to make the most precise determination to date of the strange-, up-, and down-quark masses, msm_s, mum_u, and mdm_d, respectively. Perturbative matching is required in order to connect the lattice-regularized bare- quark masses to the masses as defined in the \msbar scheme, and this is done here for the first time at next-to-next-to leading (or two-loop) order. The bare-quark masses required as input come from simulations by the MILC collaboration of a highly-efficient formalism (using so-called ``staggered'' quarks), with three flavors of light quarks in the Dirac sea; these simulations were previously analyzed in a joint study by the HPQCD and MILC collaborations, using degenerate uu and dd quarks, with masses as low as ms/8m_s/8, and two values of the lattice spacing, with chiral extrapolation/interpolation to the physical masses. With the new perturbation theory presented here, the resulting \msbar\ masses are m^\msbar_s(2 {GeV}) = 87(0)(4)(4)(0) MeV, and \hat m^\msbar(2 {GeV}) = 3.2(0)(2)(2)(0) MeV, where \hat m = \sfrac12 (m_u + m_d) is the average of the uu and dd masses. The respective uncertainties are from statistics, simulation systematics, perturbation theory, and electromagnetic/isospin effects. The perturbative errors are about a factor of two smaller than in an earlier study using only one-loop perturbation theory. Using a recent determination of the ratio mu/md=0.43(0)(1)(0)(8)m_u/m_d = 0.43(0)(1)(0)(8) due to the MILC collaboration, these results also imply m^\msbar_u(2 {GeV}) = 1.9(0)(1)(1)(2) MeV and m^\msbar_d(2 {GeV}) = 4.4(0)(2)(2)(2) MeV. A technique for estimating the next order in the perturbative expansion is also presented, which uses input from simulations at more than one lattice spacing

    Unquenched Charmonium with NRQCD - Lattice 2000

    Get PDF
    We present results from a series of NRQCD simulations of the charmonium system, both in the quenched approximation and with n_f = 2 dynamical quarks. The spectra show evidence for quenching effects of ~10% in the S- and P-hyperfine splittings. We compare this with other systematic effects. Improving the NRQCD evolution equation altered the S-hyperfine by as much as 20 MeV, and we estimate radiative corrections may be as large as 40%.Comment: Lattice 2000 (Heavy Quark Physics

    The effects of dyad reading and text difficulty on third-graders’ reading achievement

    Get PDF
    This study replicated, with modifications, previous research of dyad reading using texts at various levels of difficulty (Morgan, 1997). The current project measured the effects of using above–grade-level texts on reading achievement and sought to determine the influences of dyad reading on both lead and assisted readers. Results indicate that weaker readers, using texts at two, three, and four grade levels above their instructional levels with the assistance of lead readers, outscored both proficient and less proficient students in the control group across multiple measures of reading achievement. However, the gains made by assisted readers were not significantly different relative to the various text levels. When all assessments were considered, assisted readers reading texts two grade levels above their instructional levels showed the most robust gains in oral reading fluency and comprehension. Lead readers also benefited from dyad reading and continued their respective reading developmental trajectories across measures
    • 

    corecore