226 research outputs found

    Coherent interaction of laser pulses in a resonant optically dense extended medium under the regime of strong field-matter coupling

    Full text link
    Nonstationary pump-probe interaction between short laser pulses propagating in a resonant optically dense coherent medium is considered. A special attention is paid to the case, where the density of two-level particles is high enough that a considerable part of the energy of relatively weak external laser-fields can be coherently absorbed and reemitted by the medium. Thus, the field of medium reaction plays a key role in the interaction processes, which leads to the collective behavior of an atomic ensemble in the strongly coupled light-matter system. Such behavior results in the fast excitation interchanges between the field and a medium in the form of the optical ringing, which is analogous to polariton beating in the solid-state optics. This collective oscillating response, which can be treated as successive beats between light wave-packets of different group velocities, is shown to significantly affect propagation and amplification of the probe field under its nonlinear interaction with a nearly copropagating pump pulse. Depending on the probe-pump time delay, the probe transmission spectra show the appearance of either specific doublet or coherent dip. The widths of these features are determined by the density-dependent field-matter coupling coefficient and increase during the propagation. Besides that, the widths of the coherent features, which appear close to the resonance in the broadband probe-spectrum, exceed the absorption-line width, since, under the strong-coupling regime, the frequency of the optical ringing exceeds the rate of incoherent relaxation. Contrary to the stationary strong-field effects, the density- and coordinate-dependent transmission spectra of the probe manifest the importance of the collective oscillations and cannot be obtained in the framework of the single-atom model.Comment: 10 pages, 8 figures, to be published in Phys. Rev.

    The ecology of chronic wasting disease in wildlife

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Prions are misfolded infectious proteins responsible for a group of fatal neurodegenerative diseases termed transmissible spongiform encephalopathy or prion diseases. Chronic Wasting Disease (CWD) is the prion disease with the highest spillover potential, affecting at least seven Cervidae (deer) species. The zoonotic potential of CWD is inconclusive and cannot be ruled out. A risk of infection for other domestic and wildlife species is also plausible. Here, we review the current status of the knowledge with respect to CWD ecology in wildlife. Our current understanding of the geographic distribution of CWD lacks spatial and temporal detail, does not consider the biogeography of infectious diseases, and is largely biased by sampling based on hunters’ cooperation and funding available for each region. Limitations of the methods used for data collection suggest that the extent and prevalence of CWD in wildlife is underestimated. If the zoonotic potential of CWD is confirmed in the short term, as suggested by recent results obtained in experimental animal models, there will be limited accurate epidemiological data to inform public health. Research gaps in CWD prion ecology include the need to identify specific biological characteristics of potential CWD reservoir species that better explain susceptibility to spillover, landscape and climate configurations that are suitable for CWD transmission, and the magnitude of sampling bias in our current understanding of CWD distribution and risk. Addressing these research gaps will help anticipate novel areas and species where CWD spillover is expected, which will inform control strategies. From an ecological perspective, control strategies could include assessing restoration of natural predators of CWD reservoirs, ultrasensitive CWD detection in biotic and abiotic reservoirs, and deer density and landscape modification to reduce CWD spread and prevalence

    Molecular, Biochemical and Genetic Characteristics of BSE in Canada

    Get PDF
    The epidemiology and possibly the etiology of bovine spongiform encephalopathy (BSE) have recently been recognized to be heterogeneous. In particular, three types [classical (C) and two atypical (H, L)] have been identified, largely on the basis of characteristics of the proteinase K (PK)-resistant core of the misfolded prion protein associated with the disease (PrPres). The present study was conducted to characterize the 17 Canadian BSE cases which occurred prior to November 2009 based on the molecular and biochemical properties of their PrPres, including immunoreactivity, molecular weight, glycoform profile and relative PK sensitivity. Two cases exhibited molecular weight and glycoform profiles similar to those of previously reported atypical cases, one corresponding to H-type BSE (case 6) and the other to L-type BSE (case 11). All other cases were classified as C-type. PK digestion under mild and stringent conditions revealed a reduced protease resistance in both of these cases compared to the C-type cases. With Western immunoblotting, N-terminal-specific antibodies bound to PrPres from case 6 but not to that from case 11 or C-type cases. C-terminal-specific antibodies revealed a shift in the glycoform profile and detected a fourth protein fragment in case 6, indicative of two PrPres subpopulations in H-type BSE. No mutations suggesting a genetic etiology were found in any of the 17 animals by sequencing the full PrP-coding sequence in exon 3 of the PRNP gene. Thus, each of the three known BSE types have been confirmed in Canadian cattle and show molecular characteristics highly similar to those of classical and atypical BSE cases described from Europe, Japan and the USA. The occurrence of atypical cases of BSE in countries such as Canada with low BSE prevalence and transmission risk argues for the occurrence of sporadic forms of BSE worldwide

    Study of the properties of thermoset materials derived from epoxidized soybean oil and protein fillers

    Full text link
    [EN] Novel bio-based thermoset formulations were prepared by using epoxidized soybean oil (ESBO), nadic methyl anhydride as a hardener and with different types of proteins as fillers. In the first part of the study, the effect of the protein-type (wheat gluten, soy protein, casein and ovalbumin) on cured ESBO materials was investigated. Thermal and mechanical properties were characterized by flexural tests, Shore D hardness, Charpy impact tests, Vicat softening temperature and heat deflection temperature. In addition, a study of the morphology of fractured surfaces by scanning electron microscopy was carried out. In general, the addition of protein-based fillers improved the mechanical and thermal properties. It was found that the highest increase of thermal and mechanical properties was achieved by ovalbumin. In the second part of the work, the effect of the total amount of ovalbumin filler was studied. Bio-based thermoset materials from ESBO and 15 wt % ovalbumin improved flexural modulus more than 150 % when compared to the unfilled material. Similar evolution was observed for other mechanical properties. Moreover, the brittleness of this composition was the minimum from the studied systems. A direct relationship between energy absorption capacity and morphologies of the failure surface was evidenced by SEM.This work is a part of the project IPT-310000-2010-037,"ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character" funded by the "Ministerio de Ciencia e Innovacion", with an aid of 189540.20 euros, within the "Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011" and funded by the European Union through FEDER funds, Technology Fund 2007-2013, "Operational Programme on R+D+I for and on behalf of the companies". Also, Generalitat Valenciana ACOMP/2012/087 is acknowledged for financial support.Fombuena Borrás, V.; Sánchez Nacher, L.; Samper Madrigal, MD.; Juárez Varón, D.; Balart Gimeno, RA. (2013). Study of the properties of thermoset materials derived from epoxidized soybean oil and protein fillers. Journal of the American Oil Chemists' Society. 90(3):449-457. https://doi.org/10.1007/s11746-012-2171-2S449457903Alonso MV, Oliet M, Garcia J, Rodriguez F, Echeverria J (2006) Gelation and isoconversional kinetic analysis of lignin-phenol-formaldehyde resol resins cure. Chem Eng J 122:159–166Altuna FI, Esposito LH, Ruseckaite RA, Stefani PM (2011) Thermal and mechanical properties of anhydride-cured epoxy resins with different contents of bio-based epoxidized soybean oil. J Appl Polym Sci 120:789–798Boquillon N, Fringant C (2000) Polymer networks derived from curing of epoxidised linseed oil: influence of different catalysts and anhydride hardeners. Polymer 41:8603–8613Boquillon N, Elbez G, Schonfeld U (2004) Properties of wheat straw particleboards bonded with different types of resin. J Wood Sci 50:230–235Chakrapani S, Crivello JV (1998) Synthesis and photoinitiated cationic polymerization of epoxidized castor oil and its derivatives. J Macromol Sci-Pure Appl Chem A35:1–20Chen F, Zhang JW (2009) A new approach for morphology control of poly(butylene adipate-co-terephthalate) and soy protein blends. Polymer 50:3770–3777Cuq B, Contard N, Guilbert S (1998) Proteins as agricultural polymers for packaging production. Am Assoc Cereal Chem 75:1–9Czub P (2006) Application of modified natural oils as reactive diluents for epoxy resins. Macromol Symp 242:60–64DdS Martini, Braga BA, Samios D (2009) On the curing of linseed oil epoxidized methyl esters with different cyclic dicarboxylic anhydrides. Polymer 50:2919–2925Dogan E, Kuesefoglu S (2008) Synthesis and in situ foaming of biodegradable malonic acid ESO polymers. J Appl Polym Sci 110:1129–1135Espinosa-Perez J, Wiesenborn DP, Tostenson K, Ulven CA, Tatlari M (2007) Preparation and partial characterization of canola-based epoxy resins for bio-based plastic composites. ASABE Annual International Meeting, 076079, Minneapolis, MNJin H, Zhang L, Chen F (2003) Effects of lignin as a filler on properties of soy protein plastics. I Lignosulfonate. J Appl Polym Sci 88:3284–3290Liu ZS, Erhan SZ, Calvert PD (2007) Solid freeform fabrication of epoxidized soybean oil/epoxy composite with bis or polyalkyleneamine curing agents. Compos Part A Appl Sci Manuf 38:87–93Matejka L, Lovy J, Pokorny S, Bouchal K, Dusek K (1983) Curing epoxy-resins with anhydrides—model reactions and reaction-mechanism. J Polym Sci Part A Polym Chem 21:2873–2885Miyagawa H, Mohanty AK, Drzal LT, Misra M (2005) Nanocomposites from bio-based epoxy and single-wall carbon nanotubes: synthesis, and mechanical and thermo-physical properties evaluation. Nanotechnology 16:118–124Mohamed A, Finkenstadt VL, Gordon SH, Palmquist DE (2010) Thermal and mechanical properties of compression-molded pMDI-reinforced PCL/gluten composites. J Appl Polym Sci 118:2778–2790Montero de Espinosa L, Ronda JC, Galià M, Cádiz V (2008) A new enone-containing triglyceride derivative as precursor of thermosets from renewable resources. J Polym Sci Part A Polym Chem 46:6843–6850Park SJ, Jin FL, Lee JR (2004) Synthesis and thermal properties of epoxidized vegetable oil. Macromol Rapid Commun 25:724–727Pfister DP, Baker RJ, Henna HP, Lu Y, Larock CR (2008) Preparation and properties of tung oil-based composites using spent germ as a natural filler. J Appl Polym Sci 108:3618–3625Reiznautt QB, Garcia ITS, Samios D (2009) Oligoesters and polyesters produced by the curing of sunflower oil epoxidized biodiesel with cis-cyclohexane dicarboxylic anhydride: synthesis and characterization. Mater Sci Eng C Mater Biol Appl 29:2302–2311Rüsch Gen Klaas M, Warwel S (1999) Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis. Ind Crops Prod 9:125–132Sailaja RRN, Girija BG, Madras G, Balasubramanian N (2008) Effect of compatibilization on mechanical and thermal properties of polypropylene—soy flour composites. J Mater Sci 43:64–67Samper MD, Fombuena V, Boronat T, García-Sanoguera D, Balart R (2012) Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides. J Am Oil Chem Soc 89(8):1521–1528Sharma S (2008) Fabrication and characterization of polymer blends and composites derived from biopolymers. Philosophy Materials Science and Engineering. Graduate School of Clemson University, ClemsonSharma BK, Liu Z, Adhvaryu A, Erhan SZ (2008) One-pot synthesis of chemically modified vegetable oils. J Agric Food Chem 56:3049–3056Sue HJ, Wang S, Jane J (1997) Morphology and mechanical behaviour of engineering soy plastics. J Polym 38:5035Wang S, Sue HJ, Jane J (1996) Effects of polyhydric alcohols on the mechanical properties of soy protein plastics. J Macromol Sci Pure Appl Chem A33:557–569Wazzan AA, Al-Turaif HA, Abdelkader AF (2006) Influence of submicron TiO2 particles on the mechanical properties and fracture characteristics of cured epoxy resin. Polym Plastics Technol Eng 45:1155–116

    Scaling Behavior of Human Locomotor Activity Amplitude: Association with Bipolar Disorder

    Get PDF
    Scale invariance is a feature of complex biological systems, and abnormality of multi-scale behaviour may serve as an indicator of pathology. The hypothalamic suprachiasmatic nucleus (SCN) is a major node in central neural networks responsible for regulating multi-scale behaviour in measures of human locomotor activity. SCN also is implicated in the pathophysiology of bipolar disorder (BD) or manic-depressive illness, a severe, episodic disorder of mood, cognition and behaviour. Here, we investigated scaling behaviour in actigraphically recorded human motility data for potential indicators of BD, particularly its manic phase. A proposed index of scaling behaviour (Vulnerability Index [VI]) derived from such data distinguished between: [i] healthy subjects at high versus low risk of mood disorders; [ii] currently clinically stable BD patients versus matched controls; and [iii] among clinical states in BD patients

    An ultrasoft X-ray multi-microbeam irradiation system for studies of DNA damage responses by fixed- and live-cell fluorescence microscopy

    Get PDF
    Localized induction of DNA damage is a valuable tool for studying cellular DNA damage responses. In recent decades, methods have been developed to generate DNA damage using radiation of various types, including photons and charged particles. Here we describe a simple ultrasoft X-ray multi-microbeam system for high dose-rate, localized induction of DNA strand breaks in cells at spatially and geometrically adjustable sites. Our system can be combined with fixed- and live-cell microscopy to study responses of cells to DNA damage
    • …
    corecore