64 research outputs found

    A numerical simulation of heartassist5 blood pump using an advanced turbulence model

    No full text
    \u3cp\u3eThe need for mechanical assistance of the failing heart has increased with improvements in medicine and a rapidly aging population. In recent decades, significant progress has been made in the development and refinement of ventricular assist devices (VADs). Such devices operate in mixed laminar, transitional, and turbulent flow regime. One tool that assists in the development of VADs by facilitating understanding of the physical and mechanical properties of these flow regimes is computational fluid dynamics (CFD). In our investigation, we tested an advanced turbulence model that is a further development from standard Reynolds-averaged Navier-Stokes (RANS) models. From estimated pump flow rates (Q\u3csub\u3e0\u3c/sub\u3e) and constant rotation speed (n), pressure head (Δp) was calculated and validated with experimental data. An advanced turbulence model called scale adaptive simulation (SAS) was used in the solving of six different working cases comparing numerical SAS-SST and standard SST-kω models to experimental results.\u3c/p\u3

    Aortic valve function under support of a left ventricular assist device : continuous vs. dynamic speed support

    No full text
    Continuous flow left ventricular devices (CF-LVADs) support the failing heart at a constant speed and alters the loads on the aortic valve. This may cause insufficiency in the aortic valve under long-term CF-LVAD support. The aim of this study is to assess the aortic valve function under varying speed CF-LVAD support. A Medtronic freestyle valve and a Micromed DeBakey CF-LVAD were tested in a mock circulatory system. First, the CF-LVAD was operated at constant speeds between 7500 and 11,500 rpm with 1000 rpm intervals. The mean pump outputs obtained from these tests were applied in varying speed CF-LVAD support mode using a reference model for the pump flow. The peak of the instantaneous pump flow was applied at peak systole and mid-diastole, respectively. Ejection durations and in the aortic valve were the longest when the peak pump flow was applied at mid-diastole among the CF-LVAD operating modes. Furthermore, mean aortic valve area over a cardiac cycle was highest when the peak pump flow was applied at mid-diastole. The results show that changing phase of the reference flow rate signal may reduce the effects of the CF-LVADs on altered aortic valve closing behavior, without compromising the overall pump support level
    corecore