222 research outputs found

    Gene Fusion and Directed Evolution to Break Structural Symmetry and Boost Catalysis by an Oligomeric C‐C Bond‐Forming Enzyme

    Get PDF
    Gene duplication and fusion are among the primary natural processes that generate new proteins from simpler ancestors. Here we adopted this strategy to evolve a promiscuous homohexameric 4-oxalocrotonate tautomerase (4-OT) into an efficient biocatalyst for enantioselective Michael reactions. We first designed a tandem-fused 4-OT to allow independent sequence diversification of adjacent subunits by directed evolution. This fused 4-OT was then subjected to eleven rounds of directed evolution to give variant 4-OT(F11), which showed an up to 320-fold enhanced activity for the Michael addition of nitromethane to cinnamaldehydes. Crystallographic analysis revealed that 4-OT(F11) has an unusual asymmetric trimeric architecture in which one of the monomers is flipped 180° relative to the others. This gene duplication and fusion strategy to break structural symmetry is likely to become an indispensable asset of the enzyme engineering toolbox, finding wide use in engineering oligomeric proteins

    X-ray structure of bovine pancreatic phospholipase A(2) at atomic resolution

    Get PDF
    Using synchrotron radiation and a CCD camera, X-ray data have been collected from wild-type bovine pancreatic phospholipase A(2) at 100 K to 0.97 Angstrom resolution allowing full anisotropic refinement. The final model has a conventional R factor of 9.44% for all reflections, with a mean standard uncertainty for the positional parameters of 0.031 Angstrom as calculated from inversion of the full positional least-squares matrix. At 0.97 Angstrom resolution, bovine pancreatic phospholipase A(2) reveals for the first time that its rigid scaffolding does not preclude flexibility, which probably plays an important role in the catalytic process. Functionally important regions (the interfacial binding site and calcium-binding loop) are located at the molecular surface, where conformational variability is more pronounced. A cluster of 2-methyl-2,4-pentanediol molecules is present at the entrance of the hydrophobic channel that leads to the catalytic site and mimics the fatty-acid chains of a substrate analogue. Bovine pancreatic phospholipase A(2) at atomic resolution is compared with previous crystallographic structures and with models derived from nuclear magnetic resonance studies. Given the high structural similarity among extracellular phospholipases A(2) observed so far at lower resolution, the results arising from this structural analysis are expected to be of general validity for this class of enzymes

    Regio- and stereoselective steroid hydroxylation by CYP109A2 from Bacillus megaterium explored by X-ray crystallography and computational modeling

    Get PDF
    The P450 monooxygenase CYP109A2 from Bacillus megaterium DSM319 was previously found to convert vitamin D3 to 25-hydroxyvitamin D3. Here, we show that this enzyme is also able to convert testosterone in a highly regio- and stereoselective manner to 16β-hydroxytestosterone. To reveal the structural determinants governing the regio- and stereoselective steroid hydroxylation reactions catalyzed by CYP109A2, two crystal structures of CYP109A2 were solved in similar closed conformations, one revealing a bound testosterone in the active site pocket, albeit at a non-productive site away from the heme-iron. To examine if the closed crystal structures nevertheless correspond to a reactive conformation of CYP109A2, docking and molecular dynamics simulations were performed with testosterone and vitamin D3 present in the active site. These molecular dynamics simulations were analyzed for catalytically productive conformations, the relative occurrences of which were in agreement with the experimentally determined stereoselectivities if the predicted stability of each carbon hydrogen bond was taken into account. Overall, the first-time determination and analysis of the catalytically relevant 3D conformation of CYP109A2 will allow for future small molecule ligand screening in silico, as well as enabling site-directed mutagenesis towards improved enzymatic properties of this enzyme.</p

    Engineering Thermostability in Artificial Metalloenzymes to Increase Catalytic Activity

    Get PDF
    Protein engineering has shown widespread use in improving the industrial application of enzymes and broadening the conditions they are able to operate under by increasing their thermostability and solvent tolerance. Here, we show that protein engineering can be used to increase the thermostability of an artificial metalloenzyme. Thermostable variants of the human steroid carrier protein 2L, modified to bind a metal catalyst, were created by rational design using structural data and a 3DM database. These variants were tested to identify mutations that enhanced the stability of the protein scaffold, and a significant increase in melting temperature was observed with a number of modified metalloenzymes. The ability to withstand higher reaction temperatures resulted in an increased activity in the hydroformylation of 1-octene, with more than fivefold improvement in turnover number, whereas the selectivity for linear aldehyde remained high up to 80%

    Substrate-Assisted Catalysis Unifies Two Families of Chitinolytic Enzymes

    Get PDF
    Hen egg-white lysozyme has long been the paradigm for enzymatic glycosyl hydrolysis with retention of configuration, with a protonated carboxylic acid and a deprotonated carboxylate participating in general acid-base catalysis. In marked contrast, the retaining chitin degrading enzymes from glycosyl hydrolase families 18 and 20 all have a single glutamic acid as the catalytic acid but lack a nucleophile on the enzyme. Both families have a catalytic (βα)8-barrel domain in common. X-ray structures of three different chitinolytic enzymes complexed with substrates or inhibitors identify a retaining mechanism involving a protein acid and the carbonyl oxygen atom of the substrate’s C2 N-acetyl group as the nucleophile. These studies unambiguously demonstrate the distortion of the sugar ring toward a sofa conformation, long postulated as being close to that of the transition state in glycosyl hydrolysis.

    Structural and mutational characterization of the catalytic A-module of the mannuronan C-5-epimerase AlgE4 from Azotobacter vinelandii

    Get PDF
    Alginate is a family of linear copolymers of (1→4)-linked β-d-mannuronic acid and its C-5 epimer α-l-guluronic acid. The polymer is first produced as polymannuronic acid and the guluronic acid residues are then introduced at the polymer level by mannuronan C-5-epimerases. The structure of the catalytic A-module of the Azotobacter vinelandii mannuronan C-5-epimerase AlgE4 has been determined by x-ray crystallography at 2.1-Å resolution. AlgE4A folds into a right-handed parallel β-helix structure originally found in pectate lyase C and subsequently in several polysaccharide lyases and hydrolases. The β-helix is composed of four parallel β-sheets, comprising 12 complete turns, and has an amphipathic α-helix near the N terminus. The catalytic site is positioned in a positively charged cleft formed by loops extending from the surface encompassing Asp(152), an amino acid previously shown to be important for the reaction. Site-directed mutagenesis further implicates Tyr(149), His(154), and Asp(178) as being essential for activity. Tyr(149) probably acts as the proton acceptor, whereas His(154) is the proton donor in the epimerization reaction

    Three-dimensional Structure of L-2-Haloacid Dehalogenase from Xanthobacter autotrophicus GJ10 Complexed with the Substrate-analogue Formate

    Get PDF
    The L-2-haloacid dehalogenase from the 1,2-dichloroethane degrading bacterium Xanthobacter autotrophicus GJ10 catalyzes the hydrolytic dehalogenation of small L-2-haloalkanoic acids to yield the corresponding D-2-hydroxyalkanoic acids. Its crystal structure was solved by the method of multiple isomorphous replacement with incorporation of anomalous scattering information and solvent flattening, and was refined at 1.95-Å resolution to an R factor of 21.3%. The three-dimensional structure is similar to that of the homologous L-2-haloacid dehalogenase from Pseudomonas sp. YL (1), but the X. autotrophicus enzyme has an extra dimerization domain, an active site cavity that is completely shielded from the solvent, and a different orientation of several catalytically important amino acid residues. Moreover, under the conditions used, a formate ion is bound in the active site. The position of this substrate-analogue provides valuable information on the reaction mechanism and explains the limited substrate specificity of the Xanthobacter L-2-haloacid dehalogenase.

    Feasibility of joystick guided colonoscopy

    Get PDF
    The flexible endoscope is increasingly used to perform minimal invasive interventions. A novel add-on platform allows single-person control of both endoscope and instrument at the site of intervention. The setup changes the current routine of handling the endoscope. This study aims to determine if the platform allows effective and efficient manipulation to position the endoscope at potential intervention sites throughout the bowel. Five experts in flexible endoscopy first performed three colonoscopies on a computer simulator using the conventional angulation wheels. Next they trained with the joystick interface to achieve their personal level of intubation time with low pain score. 14 PhD students (novices) without hands-on experience performed the same colonoscopy case using either the conventional angulation wheels or joystick interface. Both novice groups trained to gain the average expert level. The cecal intubation time, pain score and visualization performance (% of bowel wall) were recorded. All experts reached their personal intubation time in 6 ± 6 sessions. Three experts completed their learning curve with low pain score in 8 ± 6 sessions. The novices required 11 ± 6 sessions using conventional angulation wheels, and 12 ± 6 sessions using the joystick interface. There was no difference in the visualization performance between the novice and between the expert groups. This study shows that the add-on platform enables endoscope manipulation required to perform colonoscopy. Experts need only a relatively short training period. Novices are as effective and as efficient in endoscope manipulation when comparing the add-on platform with conventional endoscope contro

    Damaging real lives through obstinacy: re-emphasising why significance testing is wrong

    Get PDF
    This paper reminds readers of the absurdity of statistical significance testing, despite its continued widespread use as a supposed method for analysing numeric data. There have been complaints about the poor quality of research employing significance tests for a hundred years, and repeated calls for researchers to stop using and reporting them. There have even been attempted bans. Many thousands of papers have now been written, in all areas of research, explaining why significance tests do not work. There are too many for all to be cited here. This paper summarises the logical problems as described in over 100 of these prior pieces. It then presents a series of demonstrations showing that significance tests do not work in practice. In fact, they are more likely to produce the wrong answer than a right one. The confused use of significance testing has practical and damaging consequences for people's lives. Ending the use of significance tests is a pressing ethical issue for research. Anyone knowing the problems, as described over one hundred years, who continues to teach, use or publish significance tests is acting unethically, and knowingly risking the damage that ensues
    corecore