45 research outputs found

    Clastic vs. primary precipitated evaporites in the Messinian sicilian Basins

    Get PDF
    The Messinian stratigraphy of Sicily has a particular importance for the comprehension ofthe Messinian salinity crisis as its successions bear the greatest similarity with those of thedeep Mediterranean basins. Despite the large number of studies carried out in the last 30years, we believe that the true time and genetic relationships between the different evaporiticand non evaporitic rock bodies are still not well established. This is probably due to thelimited, partial view offered by the central Sicilian basin, despite its complete Messinianstratigraphic record.Clastic and chaotic evaporitic deposits emplaced by tectonically-driven small to largescaleresedimentation processes form an important part of the MSC record of Sicily in theBelice and Caltanissetta basins. Facies characteristics of clastic evaporites, the stratigraphicrelationships with the other Messinian deposits, their possible significance in the regionalgeological evolution and the implications at a Mediterranean scale will be discussed in thefield. Attention also will be paid to primary precipitated facies of Lower and UpperEvaporites.The main aim of this field trip is to visit and discuss, beside some of the classic localitiesof the Caltanissetta basin, other less known outcrops of western Sicily (Belice basin), inorder to have a more complete regional geological framework of the MSC events in Sicily.This will give the participants the opportunity to discuss many of the still open problemsconcerning the MSC. In this section we suggest some topics for discussion during the fieldtrip

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well

    The Messinian Salinity Crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario

    No full text
    After a long period of controversial debate about the interpretation of the Messinian salinity crisis (MSC), a near consensus existed since the ODP Leg 42A for a model keeping the major lines of the deep basin-shallow water model initially proposed by Hsü et al. (1973). The knowledge of the crisis was improved since the 1995s by the availability of a very accurate astronomically calibrated timescale. The debate about its interpretation was then reactivated by several new scenarios that questioned most the major aspects of the previous classical models. The updated re-examination of the most salient features along with consideration of the hydrological requirements for evaporite deposition allow us to assess the viability of the new models. We propose an integrated scenario that revives the key points of the previous model with new statements about the chronology, depositional settings, hydrological mechanisms, consequences and correlations with the global changes. A model implying two main stages of evaporite deposition that affected successively the whole basin with a slight diachronism matches better the whole dataset. The distribution of the evaporites and their depositional timing were constrained by the high degree of paleogeographical differentiation and by the threshold effects that governed the water exchanges. It is assumed that the central Sicilian basin was a deep basin located in a marginal position with regard to the deepest central basins. The restriction of the Mediterranean was predominantly under a tectonic control, but the complex development of the evaporitic crisis implied the interplay of both glacio-eustatic changes and fluctuations of the circum-Mediterranean climate. The first evaporitic stage (lower evaporites) that includes the deposition of the thick homogeneous halite unit with K–Mg salt interbeds in the deepest basins is correlated with the major evaporative drawdown and higher aridity, and occurred during the glacial period recorded in the ocean sediments between 6.3 and 5.6Ma. The deposition of the potash in Sicily is tentatively linked to the two major glacial peaks TG 20 and TG 22, while the end of this first stage is linked to the peak TG 12. The second stage (upper evaporites) correlates with the interval of warming and global sea level rise recorded in the ocean since 5.6–5.5Ma onwards. During this second stage, freshwater contribution increased and culminated by the latest Messinian dilution, i.e. the Lago-Mare event, as the result of the worsened tectonically driven closure of the Atlantic gateways combined to an evolution towards wetter climate conditions at least on the mountainous peripheral areas. In fact, reduced inputs of seawater continued to enter at least episodically the basin through the MSC explaining the sporadic presence of marine organisms. These inputs reached their lowest value and practically ceased during the latest Messinian dilution, just before the abrupt restoration of stable open marine conditions at the beginning of the Zanclean. A polyphased erosional surface affected the Mediterranean margins during the MSC with several critical episodes. The major episode related to the greatest water level fall, more than 1000m, occurred during the deposition of the lower evaporites, from the onset of the evaporite deposition till the end of the first stage. Erosional processes remained active during the second evaporitic stage especially whenever the basin dried-up and a last important event marked by the karstification of the evaporites developed during the latest Messinian dilution just before the Early Zanclean reflooding that filled the erosional morpholog

    Paleoenvironmental evolution of the eastern Mediterranean during the Messinian: Constraints from integrated microfossil data of the Pissouri Basin (Cyprus)

    No full text
    Integrated data of calcareous nannofossils, as well as planktonic and benthic foraminifera from the Pissouri Motorway section on Cyprus allow the reconstruction of surface- and bottom-water paleoenvironments of the eastern Mediterranean during the interval preceding the Messinian salinity crisis (MSC). Contrary to deeper-water locations, where benthic foraminifera faunas are suppressed or absent just after the Tortonian-Messinian boundary, sediments deposited at intermediate water depths do contain benthic assemblages. From the earliest Messiman onwards, a development towards increasingly unfavourable paleoenvironments is reflected in the planktonic and benthic microfossil records of the Pissouri section and proceeds with rather discrete time steps that can be correlated to sequences throughout the Mediterranean. Shortly after the Tortonian-Messinian boundary a transition is recorded in the sedimentology and the open marine, deeper-water taxa disappear from the benthic foraminifera assemblages; subsequently, the diversity of all fauna groups diminishes. The changes recorded at species level in both surface-water and sea-floor dwelling taxa suggest decreasing circulation of the bottom waters, associated with changes in the surface waters, most likely due to increasing stratification. From similar to 6.73 Ma onwards, our data indicate a prominent change to more restricted conditions and increasing salinity at the sea floor together with intermittently rising surface water salinity. The dominance of oligotypic and monospecific assemblages and the frequent shifts in assemblage compositions of all microfossil groups indicate severely stressed environments after similar to 6.4 Ma, probably related to increased salinity. The major changes in palcoenvironmental conditions, including oxygen deprivation due to stagnation and hypersalinity, can be explained by hydrographical changes in the Mediterranean basin, which are probably caused by tectonic movements in the Rif Corridor acting in concert with astronomical cyclicity. Evaluation of the paleodepth proxies indicates that the depth of the Pissouri Basin remained rather constant at similar to 300-500 in, with a minimum of 200 in, until deposition of the "barre jaune", the transitional interval towards the evaporites and that early shallowing to neritic depths, as was proposed before, is highly unlikely

    Paleoecological constraints on reef-coral morphologies in the Tortonian–early Messinian of the Lorca Basin, SE Spain

    No full text
    Coral reefs represent one of the main carbonate factories that contributed to the control of the stratigraphic architecture of carbonate platforms, which had a widespread development during the late Miocene in the paleo-Mediterranean area. The late Miocene reef complexes of the Lorca Basin in southeastern Spain are composed of five mixed siliciclastic/carbonate units, middle Tortonian to early Messinian in age. The development of coral reefs probably ceased when the first evaporitic event occurred in the basin centre in the early Messinian. This study mainly focuses on the response of reef communities and the modifications of reef organisation to global and regional parameters. At the platform scale, the carbonates are intermixed with terrigenous deposits related to two main types of clastic systems: torrential fans and fluvial to deltaic systems. The amount of clastic input greatly affected reef growth and coral morphologies. Three different types of stratal geometries were delineated in the reef complex: sigmoids, bioherms, and patches and carpets. The reef frameworks are mainly constructed by a poorly diversified assemblage of corals composed of poritids, faviids, and mussids. Porites is the principal reef builder of the sigmoids and carpets where it is widely distributed. Tarbellastraea is common in bioherms and Acanthrastraea appears generally associated with Porites in patches. Five basic growth forms of Porites are observed: thin branching or “finger-shaped”, thick branching to columnar, domed to hemispheric, encrusting, and platy to dish. Differences in coral morphology are used to define a relative water depth zonation in monogeneric reefs. The distribution of these growth forms was principally controlled by water depth. The reef flat is dominated by small thin branching or finger-shaped corals that are replaced towards the reef front by domed to hemispheric corals commonly encrusted by coralline algae. Downslope, columnar morphologies grade into thin branching shapes. The reef morphologies are variable throughout the five mixed siliciclastic/carbonate units at the platform scale. The first and oldest unit is dominated by bioclasts, whereas units 2, 3, and 5 are Porites-dominated, sigmoid complexes. Unit 4 is a well-developed biohermal complex mainly composed of Tarbellastraea. These units started to develop as early as middle Tortonian and stopped as late as early Messinian, and show a progradational trend, where the two latest units are well developed. Thus, carbonate production changed from grain-producing biota in the basal unit to framework-producing biota in the overlying units, consistent with evolution from a distally steepened ramp to a reef-rimmed shelf. At the scale of individual reef units, the relative water depth zonation of the corals is controlled by ecological changes (substrate, nutrients, synecologic relations, and diversification of coral species). In the transects across the carbonate platform related to the different units, the coral zonation records changes in spatial distribution of corals in response to ecological stresses and changes in regional and global environments (tectonic, relative sea-level changes, and runoff)
    corecore