8 research outputs found

    Developing a clinical prediction rule for repeated consultations with functional somatic symptoms in primary care:A cohort study

    Get PDF
    OBJECTIVES: Patients who present in primary care with chronic functional somatic symptoms (FSS) have reduced quality of life and increased health care costs. Recognising these early is a challenge. The aim is to develop and internally validate a clinical prediction rule for repeated consultations with FSS. DESIGN AND SETTING: Records from the longitudinal population-based ('Lifelines') cohort study were linked to electronic health records from general practitioners (GPs). PARTICIPANTS: We included patients consulting a GP with FSS within 1 year after baseline assessment in the Lifelines cohort. OUTCOME MEASURES: The outcome is repeated consultations with FSS, defined as ≥3 extra consultations for FSS within 1 year after the first consultation. Multivariable logistic regression, with bootstrapping for internal validation, was used to develop a risk prediction model from 14 literature-based predictors. Model discrimination, calibration and diagnostic accuracy were assessed. RESULTS: 18 810 participants were identified by database linkage, of whom 2650 consulted a GP with FSS and 297 (11%) had ≥3 extra consultations. In the final multivariable model, older age, female sex, lack of healthy activity, presence of generalised anxiety disorder and higher number of GP consultations in the last year predicted repeated consultations. Discrimination after internal validation was 0.64 with a calibration slope of 0.95. The positive predictive value of patients with high scores on the model was 0.37 (0.29-0.47). CONCLUSIONS: Several theoretically suggested predisposing and precipitating predictors, including neuroticism and stressful life events, surprisingly failed to contribute to our final model. Moreover, this model mostly included general predictors of increased risk of repeated consultations among patients with FSS. The model discrimination and positive predictive values were insufficient and preclude clinical implementation

    Ecological Momentary Assessments and Automated Time Series Analysis to Promote Tailored Health Care:A Proof-of-Principle Study

    Get PDF
    BACKGROUND: Health promotion can be tailored by combining ecological momentary assessments (EMA) with time series analysis. This combined method allows for studying the temporal order of dynamic relationships among variables, which may provide concrete indications for intervention. However, application of this method in health care practice is hampered because analyses are conducted manually and advanced statistical expertise is required. OBJECTIVE: This study aims to show how this limitation can be overcome by introducing automated vector autoregressive modeling (VAR) of EMA data and to evaluate its feasibility through comparisons with results of previously published manual analyses. METHODS: We developed a Web-based open source application, called AutoVAR, which automates time series analyses of EMA data and provides output that is intended to be interpretable by nonexperts. The statistical technique we used was VAR. AutoVAR tests and evaluates all possible VAR models within a given combinatorial search space and summarizes their results, thereby replacing the researcher's tasks of conducting the analysis, making an informed selection of models, and choosing the best model. We compared the output of AutoVAR to the output of a previously published manual analysis (n=4). RESULTS: An illustrative example consisting of 4 analyses was provided. Compared to the manual output, the AutoVAR output presents similar model characteristics and statistical results in terms of the Akaike information criterion, the Bayesian information criterion, and the test statistic of the Granger causality test. CONCLUSIONS: Results suggest that automated analysis and interpretation of times series is feasible. Compared to a manual procedure, the automated procedure is more robust and can save days of time. These findings may pave the way for using time series analysis for health promotion on a larger scale. AutoVAR was evaluated using the results of a previously conducted manual analysis. Analysis of additional datasets is needed in order to validate and refine the application for general use

    Hair Cortisol in Twins : Heritability and Genetic Overlap with Psychological Variables and Stress-System Genes

    Get PDF
    A. Palotie on työryhmän jäsen.Hair cortisol concentration (HCC) is a promising measure of long-term hypothalamus-pituitary-adrenal (HPA) axis activity. Previous research has suggested an association between HCC and psychological variables, and initial studies of inter-individual variance in HCC have implicated genetic factors. However, whether HCC and psychological variables share genetic risk factors remains unclear. The aims of the present twin study were to: (i) assess the heritability of HCC; (ii) estimate the phenotypic and genetic correlation between HPA axis activity and the psychological variables perceived stress, depressive symptoms, and neuroticism; using formal genetic twin models and molecular genetic methods, i.e. polygenic risk scores (PRS). HCC was measured in 671 adolescents and young adults. These included 115 monozygotic and 183 dizygotic twin-pairs. For 432 subjects PRS scores for plasma cortisol, major depression, and neuroticism were calculated using data from large genome wide association studies. The twin model revealed a heritability for HCC of 72%. No significant phenotypic or genetic correlation was found between HCC and the three psychological variables of interest. PRS did not explain variance in HCC. The present data suggest that HCC is highly heritable. However, the data do not support a strong biological link between HCC and any of the investigated psychological variables.Peer reviewe

    Le Nouveau journal de Strasbourg

    No full text
    11 août 19131913/08/11 (N221).Appartient à l’ensemble documentaire : BNUStr014Appartient à l’ensemble documentaire : BNUStr017Appartient à l’ensemble documentaire : Alsace

    Genetic studies of body mass index yield new insights for obesity biology

    Get PDF
    Note: A full list of authors and affiliations appears at the end of the article. Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P 20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.</p
    corecore