204 research outputs found

    Decoherence of encoded quantum registers

    Full text link
    In order to eliminate disturbing effects of decoherence, encoding of quantum information in decoherence-free subspaces has been suggested. We analyze the benefits of this concept for a quantum register that is realized in a spin chain in contact with a common bosonic bath. Within a dissipation-less model we provide explicit analytical results for the average fidelity of plain and encoded quantum registers. For the investigation of dissipative spin-boson couplings we employ a master equation of Bloch-Redfield type.Comment: 13 pages, 9 figure

    Distance dependence of entanglement generation via a bosonic heat bath

    Full text link
    Within a generalized Caldeira-Leggett model we analyze the conditions under which a bosonic heat bath can entangle two microscopic quantum systems at a distance rr. We find that the attainable entanglement is extremely distance-sensitive. Significant entanglement can only be achieved if the systems are within a {\em microscopic} distance that is of order of the cut-off wavelength λ\lambda of the system-bath interaction. At larger distances the maximal entanglement is exponentially suppressed with a decay length of order λ\lambda. We conclude that entanglement generation via a heat bath is not suitable for entangling remote objects.Comment: 4 pages, 3 figures, new title, final version to appear in Phys. Rev. Let

    Quantum Error Correction in Spatially Correlated Quantum Noise

    Full text link
    We consider quantum error correction of quantum-noise that is created by a local interaction of qubits with a common bosonic bath. The possible exchange of bath bosons between qubits gives rise to spatial and temporal correlations in the noise. We find that these kind of noise correlations have a strong negative impact on quantum error correction.Comment: 4 pages, 1 figure, final version with minor correction

    The SWAP EUV Imaging Telescope Part I: Instrument Overview and Pre-Flight Testing

    Full text link
    The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope on board ESA's Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54x54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weather-relevant events and features in the low solar corona. Given the limited resources of the PROBA2 microsatellite, the SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS-APS detector. This article provides reference documentation for users of the SWAP image data.Comment: 26 pages, 9 figures, 1 movi

    Quantum Graphs: A simple model for Chaotic Scattering

    Full text link
    We connect quantum graphs with infinite leads, and turn them to scattering systems. We show that they display all the features which characterize quantum scattering systems with an underlying classical chaotic dynamics: typical poles, delay time and conductance distributions, Ericson fluctuations, and when considered statistically, the ensemble of scattering matrices reproduce quite well the predictions of appropriately defined Random Matrix ensembles. The underlying classical dynamics can be defined, and it provides important parameters which are needed for the quantum theory. In particular, we derive exact expressions for the scattering matrix, and an exact trace formula for the density of resonances, in terms of classical orbits, analogous to the semiclassical theory of chaotic scattering. We use this in order to investigate the origin of the connection between Random Matrix Theory and the underlying classical chaotic dynamics. Being an exact theory, and due to its relative simplicity, it offers new insights into this problem which is at the fore-front of the research in chaotic scattering and related fields.Comment: 28 pages, 13 figures, submitted to J. Phys. A Special Issue -- Random Matrix Theor

    Wave-packet dynamics at the mobility edge in two- and three-dimensional systems

    Full text link
    We study the time evolution of wave packets at the mobility edge of disordered non-interacting electrons in two and three spatial dimensions. The results of numerical calculations are found to agree with the predictions of scaling theory. In particular, we find that the kk-th moment of the probability density (t)(t) scales like tk/dt^{k/d} in dd dimensions. The return probability P(r=0,t)P(r=0,t) scales like tD2/dt^{-D_2/d}, with the generalized dimension of the participation ratio D2D_2. For long times and short distances the probability density of the wave packet shows power law scaling P(r,t)tD2/drD2dP(r,t)\propto t^{-D_2/d}r^{D_2-d}. The numerical calculations were performed on network models defined by a unitary time evolution operator providing an efficient model for the study of the wave packet dynamics.Comment: 4 pages, RevTeX, 4 figures included, published versio

    Spectral Compressibility at the Metal-Insulator Transition of the Quantum Hall Effect

    Full text link
    The spectral properties of a disordered electronic system at the metal-insulator transition point are investigated numerically. A recently derived relation between the anomalous diffusion exponent η\eta and the spectral compressibility χ\chi at the mobility edge, χ=η/2d\chi=\eta/2d, is confirmed for the integer quantum Hall delocalization transition. Our calculations are performed within the framework of an unitary network-model and represent a new method to investigate spectral properties of disordered systems.Comment: 5 pages, RevTeX, 3 figures, Postscript, strongly revised version to be published in PR
    corecore