8 research outputs found

    Multi-state non-adiabatic direct-dynamics on propagated diabatic potential energy surfaces

    Get PDF
    An extension of a recent diabatisation scheme for use in direct-dynamics variational multi-configuration Gaussian (DD-vMCG) quantum dynamics calculations is presented which allows the treatment of systems with more than two electronic states. Methodological updates to the DD-vMCG implementation are presented along with applications of the method to 2-, 3- and 4-state models of the butatriene cation. As a demonstration of the utility of the method, results of 3-state, full-dimensional calculations on the DNA base, thymine, are included, showing the energy dissipation through wavefunction population transfer between states

    Curve crossing in a manifold of coupled electronic states: direct quantum dynamics simulations of formamide

    Get PDF
    Quantum dynamics simulations are an important tool to evaluate molecular behaviour including the, often key, quantum nature of the system. In this paper we present an algorithm that is able to simulate the time evolution of a molecule after photo-excitation into a manifold of states. The direct dynamics variational multi-configurational Gaussian (DD-vMCG) method circumvents the computational bottleneck problems of traditional grid-based methods by computing the potential energy functions on-the-fly, i.e. only where required. Unlike other commonly used direct dynamics methods, DD-vMCG is fully quantum mechanical. Here, the method is combined with a novel on-the-fly diabatisation scheme to simulate the short-time dynamics of the key molecule formamide and its acid analogue formimidic acid. This is a challenging test system due to the nature and large number of excited states, and eight coupled states are included in the calculations. It is shown that the method is able to provide unbiased information on the product channels open after excitation at different energies and demonstrates the potential to be a practical scheme, limited mainly by the quality of the quantum chemistry used to describe the excited states

    Time-Resolved Photoelectron Spectroscopy Studies of Isoxazole and Oxazole.

    Get PDF
    The excited state relaxation pathways of isoxazole and oxazole upon excitation with UV-light were investigated by nonadiabatic ab initio dynamics simulations and time-resolved photoelectron spectroscopy. Excitation of the bright ππ*-state of isoxazole predominantly leads to ring-opening dynamics. Both the initially excited ππ*-state and the dissociative πσ*-state offer a combined barrier-free reaction pathway, such that ring-opening, defined as a distance of more than 2 Å between two neighboring atoms, occurs within 45 fs. For oxazole, in contrast, the excited state dynamics is about twice as slow (85 fs) and the quantum yield for ring-opening is lower. This is caused by a small barrier between the ππ*-state and the πσ*-state along the reaction path, which suppresses direct ring-opening. Theoretical findings are consistent with the measured time-resolved photoelectron spectra, confirming the timescales and the quantum yields for the ring-opening channel. The results indicate that a combination of time-resolved photoelectron spectroscopy and excited state dynamics simulations can explain the dominant reaction pathways for this class of molecules. As a general rule, we suggest that the antibonding σ*-orbital located between the oxygen atom and a neighboring atom of a five-membered heterocyclic system provides a driving force for ring-opening reactions, which is modified by the presence and position of additional nitrogen atoms

    Molecular excited states through a machine learning lens

    No full text

    Different Flavors of Nonadiabatic Molecular Dynamics

    Get PDF
    The Born‐Oppenheimer approximation constitutes a cornerstone of our understanding of molecules and their reactivity, partly because it introduces a somewhat simplified representation of the molecular wavefunction. However, when a molecule absorbs light containing enough energy to trigger an electronic transition, the simplistic nature of the molecular wavefunction offered by the Born‐Oppenheimer approximation breaks down as a result of the now non‐negligible coupling between nuclear and electronic motion, often coined nonadiabatic couplings. Hence, the description of nonadiabatic processes implies a change in our representation of the molecular wavefunction, leading eventually to the design of new theoretical tools to describe the fate of an electronically‐excited molecule. This Overview focuses on this quantity—the total molecular wavefunction—and the different approaches proposed to describe theoretically this complicated object in non‐Born‐Oppenheimer conditions, namely the Born‐Huang and Exact‐Factorization representations. The way each representation depicts the appearance of nonadiabatic effects is then revealed by using a model of a coupled proton–electron transfer reaction. Applying approximations to the formally exact equations of motion obtained within each representation leads to the derivation, or proposition, of different strategies to simulate the nonadiabatic dynamics of molecules. Approaches like quantum dynamics with fixed and time‐dependent grids, traveling basis functions, or mixed quantum/classical like surface hopping, Ehrenfest dynamics, or coupled‐trajectory schemes are described in this Overview

    Different flavors of nonadiabatic molecular dynamics

    No full text
    corecore