132 research outputs found

    Listeria monocytogenes tyrosine phosphatases affect wall teichoic acid composition and phage resistance

    Get PDF
    Tyrosine phosphatase (PTP)-like proteins exist in many bacteria and are segregated into two major groups: low molecular weight and conventional. The latter group also has activity as phosphoinositide phosphatases. These two kinds of PTP are suggested to be involved in many aspects of bacterial physiology including stress response, DNA binding proteins, virulence, and capsule/cell wall production. By annotation, Listeria monocytogenes possesses two potential low molecular weight and two conventional PTPs. Using L. monocytogenes wild-type (WT) strain 10403S, we have created an in-frame deletion mutant lacking all four PTPs, as well as four additional complemented strains harboring each of the PTPs. No major physiological differences were observed between the WT and the mutant lacking all four PTPs. However, the deletion mutant strain was resistant to Listeria phages A511 and P35 and sensitive to other Listeria phages. This was attributed to reduced attachment to the cell wall. The mutant lacking all PTPs was found to lack N-acetylglucosamine in its wall teichoic acid. Phage sensitivity and attachment was rescued in a complemented strain harboring a low molecular weight PTP (LMRG1707

    Complete Genome Sequences of Two Klebsiella pneumoniae Phages Isolated as Part of an International Effort

    Get PDF
    We report the genomic sequences of phages KpCHEMY26 and KpGranit, isolated in Israel during a worldwide effort against a multidrug- and phage-resistant strain of Klebsiella pneumoniae from a patient in Finland. These results demonstrate the importance of an efficient worldwide network for collaborating in personalized therapy for infectious diseases.Peer reviewe

    Macrolide Resistance in Mycoplasma pneumoniae, Israel, 2010

    Get PDF
    Macrolide resistance in Mycoplasma pneumoniae is often found in Asia but is rare elsewhere. We report the emergence of macrolide-resistant M. pneumoniae in Israel and the in vivo evolution of such resistance during the treatment of a 6-year-old boy with pneumonia

    Mycoplasma pneumoniae detections before and during the COVID-19 pandemic: results of a global survey, 2017 to 2021

    Full text link
    Background Mycoplasma pneumoniae respiratory infections are transmitted by aerosol and droplets in close contact. Aim We investigated global M. pneumoniae incidence after implementation of non-pharmaceutical interventions (NPIs) against COVID-19 in March 2020. Methods We surveyed M. pneumoniae detections from laboratories and surveillance systems (national or regional) across the world from 1 April 2020 to 31 March 2021 and compared them with cases from corresponding months between 2017 and 2020. Macrolide-resistant M. pneumoniae (MRMp) data were collected from 1 April 2017 to 31 March 2021. Results Thirty-seven sites from 21 countries in Europe, Asia, America and Oceania submitted valid datasets (631,104 tests). Among the 30,617 M. pneumoniae detections, 62.39% were based on direct test methods (predominantly PCR), 34.24% on a combination of PCR and serology (no distinction between methods) and 3.37% on serology alone (only IgM considered). In all countries, M. pneumoniae incidence by direct test methods declined significantly after implementation of NPIs with a mean of 1.69% (SD ± 3.30) compared with 8.61% (SD ± 10.62) in previous years (p < 0.01). Detection rates decreased with direct but not with indirect test methods (serology) (–93.51% vs + 18.08%; p < 0.01). Direct detections remained low worldwide throughout April 2020 to March 2021 despite widely differing lockdown or school closure periods. Seven sites (Europe, Asia and America) reported MRMp detections in one of 22 investigated cases in April 2020 to March 2021 and 176 of 762 (23.10%) in previous years (p = 0.04). Conclusions This comprehensive collection of M. pneumoniae detections worldwide shows correlation between COVID-19 NPIs and significantly reduced detection numbers

    Massive empyema caused by Mycoplasma pneumoniae in an adult: A case report

    Get PDF
    BACKGROUND: Mycoplasma pneumoniae is responsible for more than 20% of community acquired pneumonia cases, and capable of causing upper respiratory illness as well. Complications of M.pneumoniae infections include CNS involvement but other as pericarditis were also reported. The lack of feasible culture methods and under appreciation of the pathogens ability to cause invasive disease leads to reduced number of diagnosed M.pneumoniae related complications. In contrast to many other respiratory pathogens causing pneumonia, M. pneumoniae related severe pleural complications were almost never reported. CASE PRESENTATION: We report a previously healthy 57 years old woman presented with indolent massive right pleural effusion, leukocytosis and elevated ESR. Extensive microbiological evaluation didn't reveal any pathogen in the pus even before antibiotic treatment was started. Surprisingly, M.pneumoniae DNA was detected in the pus from the empyema using PCR designed to detect M.pneumoniae. A serological assay (Serodia-Myco II) using convalescent serum was indeterminate with a titer of 1:80. The patient responded well to a treatment that included right thoracotomy with pleural decortication and a combination of antibiotics and anti-inflammatory medications. CONCLUSION: M.pneumoniae related empyema was never reported before in adult patients and was reported in only a few pediatric patients. In our patient there was no evidence to any common pathogens even before initiating antibiotic treatment. The only pathogen detected was M.pneumoniae. In this patient, serology was not helpful in establishing the diagnosis of M.pneumoniae related diseases, as was suggested before for older patients. We suggest that M.pneumoniae related empyema is probably under-diagnosed complication due to insensitivity of serology in older patients and under use of other diagnosis methods

    Imported Melioidosis, Israel, 2008

    Get PDF
    In 2008, melioidosis was diagnosed in an agricultural worker from Thailand in the southern Jordan Valley in Israel. He had newly diagnosed diabetes mellitus, fever, multiple abscesses, and osteomyelitis. Burkholderia pseudomallei was isolated from urine and blood. Four of 10 laboratory staff members exposed to the organism received chemoprophylaxis, 3 of whom had adverse events

    Bacteria Modulate the CD8+ T Cell Epitope Repertoire of Host Cytosol-Exposed Proteins to Manipulate the Host Immune Response

    Get PDF
    The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested
    corecore