34 research outputs found

    Methods for Studying <i>Magnaporthiopsis maydis</i>, the Maize Late Wilt Causal Agent

    No full text
    Late wilt, a destructive vascular disease of maize caused by the fungus Magnaporthiopsis maydis, is characterized by relatively fast wilting of maize plants closely before the physiological maturity stage. Previously, traditional microbiology-based methods have been used to isolate the pathogen and to characterize its traits. More recently, several molecular methods have been developed, enabling accurate and sensitive examination of the pathogen spread within the host. Here, we review the methods developed in the past 10 years in Israel, which include new or modified microbial and molecular techniques to identify, monitor, and study M. maydis in controlled environments and in the field. The assays inspected are exemplified with new findings and include microbial isolation methods, microscopic and PCR or qPCR identification, spore germination evaluation, root pathogenicity assay, M. maydis hyphae or filtrate effects on grain germination and sprout development, and a field assay. These diagnostic protocols enable rapid and reliable detection and identification of the pathogen in plants and seeds and studying the pathogenesis of M. maydis in susceptible and relatively resistant maize cultivars in a contaminated field. Moreover, these techniques are important for studying the population structure, and for future development of new strategies to restrict the disease&#8217;s outburst and spread

    Effective chemical protection against the maize late wilt causal agent, Harpophora maydis, in the field.

    No full text
    Late wilt, a disease severely affecting maize fields throughout Israel, is characterized by relatively rapid wilting of maize plants before tasseling and until shortly before maturity. The disease's causal agent is the fungus Harpophora maydis, a soil-borne and seed-borne pathogen, which is currently controlled using reduced sensitivity maize cultivars. In a former study, we showed that Azoxystrobin (AS) injected into a drip irrigation line assigned for each row can suppress H. maydis in the field and that AS seed coating can provide an additional layer of protection. In the present study, we examine a more cost-effective protective treatment using this fungicide with Difenoconazole mixture (AS+DC), or Fluazinam, or Fluopyram and Trifloxystrobin mixture, or Prothioconazole and Tebuconazole mixture in combined treatment of seed coating and a drip irrigation line for two coupling rows. A recently developed Real-Time PCR method revealed that protecting the plants using AS+DC seed coating alone managed to delay pathogen DNA spread in the maize tissues, in the early stages of the growth season (up to the age of 50 days from sowing), but was less effective in protecting the crops later. AS+DC seed coating combined with drip irrigation using AS+DC was the most successful treatment, and in the double-row cultivation, it reduced fungal DNA in the host tissues to near zero levels. This treatment minimized the development of wilt symptoms by 41% and recovered cob yield by a factor of 1.6 (to the level common in healthy fields). Moreover, the yield classified as A class (cob weight of more than 250 g) increased from 58% to 75% in this treatment. This successful treatment against H. maydis in Israel can now be applied in vast areas to protect sensitive maize cultivars against maize late wilt disease

    The intranasal vaccination of pregnant dams with Intimin and EspB confers protection in neonatal mice from Escherichia coli (EHEC) O157: H7 infection

    No full text
    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for intestinal disease and hemolytic uremic syndrome (HUS), a serious systemic complication which particularly affects children. In this study, we evaluated whether passive immunization protects from EHEC O157:H7 colonization and renal damage, by using a weaned BALB/c mouse model of infection. Recombinant proteins EspB and the carboxyl-terminal fragment of 280 amino acids of -intimin (-Int C280) were used in combination with a macrophage-activating lipopeptide-2 (MALP) adjuvant to immunize pregnant mice by the intranasal route. Neonatal mice were allowed to suckle vaccinated or sham-vaccinated dams until weaning when they were challenged by the oral route with a suspension of an E. coli O157:H7 Stx2+ strain. The excretion ofthe inoculated strain was followed for 72 h. All vaccinated dams exhibited elevated serum IgG response against both -Int C280 and EspB. Passive immunization of newborn mice resulted in a significantincrease in serum IgG titers against -Int C280 and a slight increase in EspB-specific antibodies. The neonates from vaccinated dams showed a significant reduction in EHEC O157:H7 colonization 48 h post challenge. In addition, the level of plasma urea concentration, a marker of renal failure, was significantly higher in offsprings of sham-vaccinated mice. In conclusion, vaccination of pregnant dams with -Int C280 and EspB could reduce colonization and systemic toxicity of EHEC O157:H7 in their suckling offsprings.Fil: Rabinovitz, Bettina Carol. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Larzabal, Mariano. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vilte, Daniel Alejandro. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Cataldi, Ángel Adrián. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mercado, Elsa Cristina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    The intranasal vaccination of pregnant dams with Intimin and EspBconfers protection in neonatal mice from Escherichia coli (EHEC)O157:H7 infection

    No full text
    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for intestinal disease and hemolytic uremic syndrome (HUS), a serious systemic complication which particularly affects children. In this study, we evaluated whether passive immunization protects from EHEC O157:H7 colonization and renal damage, by using a weaned BALB/c mouse model of infection. Recombinant proteins EspB and the carboxyl-terminal fragment of 280 amino acids of γ-intimin (γ-Int C280) were used in combination with a macrophage-activating lipopeptide-2 (MALP) adjuvant to immunize pregnant mice by the intranasal route. Neonatal mice were allowed to suckle vaccinated or sham-vaccinated dams until weaning when they were challenged by the oral route with a suspension of an E. coli O157:H7 Stx2+ strain. The excretion of the inoculated strain was followed for 72 h. All vaccinated dams exhibited elevated serum IgG response against both γ-Int C280 and EspB. Passive immunization of newborn mice resulted in a significant increase in serum IgG titers against γ-Int C280 and a slight increase in EspB-specific antibodies. The neonates from vaccinated dams showed a significant reduction in EHEC O157:H7 colonization 48 h post challenge. In addition, the level of plasma urea concentration, a marker of renal failure, was significantly higher in offsprings of sham-vaccinated mice. In conclusion, vaccination of pregnant dams with γ-Int C280 and EspB could reduce colonization and systemic toxicity of EHEC O157:H7 in their suckling offsprings.Fil: Rabinovitz, Bettina Carol. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; ArgentinaFil: Larzabal, Mariano. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Vilte, Daniel Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; ArgentinaFil: Cataldi, Angel Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Mercado, Elsa Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentin
    corecore