1,105 research outputs found

    Survey of Nutrition Management Practices in Centers for Pediatric Intestinal Rehabilitation

    Full text link
    Background: Nutrition management of pediatric intestinal failure (IF) requires interdisciplinary coordination of parenteral nutrition (PN) and enteral nutrition (EN) support. Nutrition strategies used by specialists in pediatric intestinal rehabilitation to promote gut adaptation and manage complications have not been previously summarized. Methods: A practice survey was distributed to members of the dietitian subgroup of the American Society for Parenteral and Enteral Nutrition Pediatric Intestinal Failure Section. The survey included 24 open‐ended questions related to PN and enteral feeding strategies, nutrition management of PN‐associated liver disease, and laboratory monitoring. Results: Dietitians from 14 centers completed the survey. Management components for patients at risk for cholestasis were consistent and included fat minimization, trace element modification, avoiding PN overfeeding, and providing EN. Parenteral amino acid solutions designed for infants/young children are used in patients <1 or 2 years of age. Trace minerals are dosed individually in 10 of 14 centers. Eleven centers prescribe a continuous infusion of breast milk or elemental formula 1–2 weeks after resection while 3 centers determine the formula type by the extent of resection. Most (86%) centers do not have a protocol for initiating oral/motor therapy. Laboratory panel composition varied widely by center. The selection and frequency of use depended on clinical variables, including cholestatic status, exclusive vs partial PN dependence, postrepletion verification vs routine monitoring, intestinal anatomy, and acuity of care. Conclusion: EN and PN management strategies are relatively consistent among U.S. centers. Collaborative initiatives are necessary to define better practices and establish laboratory monitoring guidelines.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145220/1/ncp10040_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145220/2/ncp10040.pd

    Health Access Broker: Secure, Patient-Controlled Management of Personal Health Records in the Cloud

    Full text link
    Secure and privacy-preserving management of Personal Health Records (PHRs) has proved to be a major challenge in modern healthcare. Current solutions generally do not offer patients a choice in where the data is actually stored and also rely on at least one fully trusted element that patients must also trust with their data. In this work, we present the Health Access Broker (HAB), a patient-controlled service for secure PHR sharing that (a) does not impose a specific storage location (uniquely for a PHR system), and (b) does not assume any of its components to be fully secure against adversarial threats. Instead, HAB introduces a novel auditing and intrusion-detection mechanism where its workflow is securely logged and continuously inspected to provide auditability of data access and quickly detect any intrusions.Comment: Copy of the paper accepted at 13th International Conference on Computational Intelligence in Security for Information Systems (CISIS

    High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring

    Get PDF
    Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folate intake following food fortification and increased vitamin use. Our goal was to determine whether high dietary folate during pregnancy affects brain development in murine offspring. Female mice were placed on control diet (CD) or folic acid-supplemented diet (FASD) throughout mating, pregnancy and lactation. Three-week-old male pups were evaluated for motor and cognitive function. Tissues from E17.5 embryos, pups and dams were collected for choline/methyl metabolite measurements, immunoblotting or gene expression of relevant enzymes. Brains were examined for morphology of hippocampus and cortex. Pups of FASD mothers displayed short-term memory impairment, decreased hippocampal size and decreased thickness of the dentate gyrus. MTHFR protein levels were reduced in FASD pup livers, with lower concentrations of phosphocholine and glycerophosphocholine in liver and hippocampus, respectively. FASD pup brains showed evidence of altered acetylcholine availability and Dnmt3a mRNA was reduced in cortex and hippocampus. E17.5 embryos and placentas from FASD dams were smaller. MTHFR protein and mRNA were reduced in embryonic liver, with lower concentrations of choline, betaine and phosphocholine. Embryonic brain displayed altered development of cortical layers. In summary, high folate intake during pregnancy leads to pseudo-MTHFR deficiency, disturbed choline/methyl metabolism, embryonic growth delay and memory impairment in offspring. These findings highlight the unintended negative consequences of supplemental folic acid

    Maintaining independence in individuals with dementia at home after a fall: a protocol for the UK pilot cluster randomised controlled trial MAINTAIN

    Get PDF
    \ua9 Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.Introduction Individuals with dementia face an increased risk of falls. Falls can cause a decline in the individual\u27s overall functionality. All types of falls, including those that do not result in injury, can lead to psychosocial consequences, such as diminished confidence and a fear of falling. Projections indicate a rising trend in dementia diagnoses, implying an increase in fall incidents. Yet, there is a lack of evidence to support interventions for people living with dementia who have fallen. Our objective is to test the feasibility of a falls intervention trial for people with dementia. Method and analysis This is a UK-based two-arm pilot cluster randomised controlled trial. In this study, six collaborating sites, which form the clusters, will be randomly allocated to either the intervention arm or the control arm (receiving treatment as usual) at a 1:1 ratio. During the 6 month recruitment phase, each cluster will enrol 10 dyads, comprising 10 individuals with dementia and their respective carers, leading to a total sample size of 60 dyads. The primary outcomes are the feasibility parameters for a full trial (ie, percentage consented, follow-up rate and cost framework). Secondary outcomes include activities of daily living, quality of life, fall efficacy, mobility, goal attainment, cognitive status, occurrence of falls, carer burden and healthcare service utilisation. Outcome measures will be collected at baseline and 28 weeks, with an additional assessment scheduled at 12 weeks for the healthcare service utilisation questionnaire. An embedded process evaluation, consisting of interviews and observations with participants and healthcare professionals, will explore how the intervention operates and the fidelity of study processes. Ethics and dissemination The study was approved by the NHS and local authority research governance and research ethics committees (NHS REC reference: 23/WA/0126). The results will be shared at meetings and conferences and will be published in peer-reviewed journals. Trial registration number ISRCTN16413728

    A Terminal Velocity on the Landscape: Particle Production near Extra Species Loci in Higher Dimensions

    Full text link
    We investigate particle production near extra species loci (ESL) in a higher dimensional field space and derive a speed limit in moduli space at weak coupling. This terminal velocity is set by the characteristic ESL-separation and the coupling of the extra degrees of freedom to the moduli, but it is independent of the moduli's potential if the dimensionality of the field space is considerably larger than the dimensionality of the loci, D >> d. Once the terminal velocity is approached, particles are produced at a plethora of nearby ESLs, preventing a further increase in speed via their backreaction. It is possible to drive inflation at the terminal velocity, providing a generalization of trapped inflation with attractive features: we find that more than sixty e-folds of inflation for sub-Planckian excursions in field space are possible if ESLs are ubiquitous, without fine tuning of initial conditions and less tuned potentials. We construct a simple, observationally viable model with a slightly red scalar power-spectrum and suppressed gravitational waves; we comment on the presence of additional observational signatures originating from IR-cascading and individual massive particles. We also show that moduli-trapping at an ESL is suppressed for D >> d, hindering dynamical selection of high-symmetry vacua on the landscape based on this mechanism.Comment: 46 pages, 6 figures. V3: typos corrected compared to JHEP version, conclusions unchange

    GMOs: Non-Health Issues

    Get PDF
    The controversy over genetically modified [GM] organisms is often framed in terms of possible hazards for human health. Articles in a previous volume of this *Encyclopedia* give a general overview of GM crops [@Mulvaney2014] and specifically examine human health [@Nordgard2014] and labeling [@Bruton2014] issues surrounding GM organisms. This article explores several other aspects of the controversy: environmental concerns, political and legal disputes, and the aim of "feeding the world" and promoting food security. Rather than discussing abstract, hypothetical GM organisms, this article explores the consequences of the GM organisms that have actually been deployed in the particular contexts that they have been deployed, on the belief that there is little point in discussing GM organisms in an idealized or context-independent way

    Effect of Aspect Ratio on Field Emission Properties of ZnO Nanorod Arrays

    Get PDF
    ZnO nanorod arrays are prepared on a silicon wafer through a multi-step hydrothermal process. The aspect ratios and densities of the ZnO nanorod arrays are controlled by adjusting the reaction times and concentrations of solution. The investigation of field emission properties of ZnO nanorod arrays revealed a strong dependency on the aspect ratio and their density. The aspect ratio and spacing of ZnO nanorod arrays are 39 and 167 nm (sample C), respectively, to exhibit the best field emission properties. The turn-on field and threshold field of the nanorod arrays are 3.83 V/ÎŒm and 5.65 V/ÎŒm, respectively. Importantly, the sample C shows a highest enhancement of factorÎČ, which is 2612. The result shows that an optimum density and aspect ratio of ZnO nanorod arrays have high efficiency of field emission

    Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis

    Get PDF
    Rational control over the morphology and the functional properties of inorganic nanostructures has been a long-standing goal in the development of bottom-up device fabrication processes. We report that the geometry of hydrothermally grown zinc oxide nanowires can be tuned from platelets to needles, covering more than three orders of magnitude in aspect ratio (~0.1–100). We introduce a classical thermodynamics-based model to explain the underlying growth inhibition mechanism by means of the competitive and face-selective electrostatic adsorption of non-zinc complex ions at alkaline conditions. The performance of these nanowires rivals that of vapour-phase-grown nanostructures and their low-temperature synthesis (<60 °C) is favourable to the integration and in situ fabrication of complex and polymer-supported devices. We illustrate this capability by fabricating an all-inorganic light-emitting diode in a polymeric microfluidic manifold. Our findings indicate that electrostatic interactions in aqueous crystal growth may be systematically manipulated to synthesize nanostructures and devices with enhanced structural control.National Science Foundation (U.S.) (MIT Center for Bits and Atoms (NSF CCR0122419))Massachusetts Institute of Technology. Media LaboratoryKorea Foundation for Advanced StudiesSamsung Electronics Co. (research internship)Harvard University. Society of FellowsWallace H. Coulter Foundation (Early Career Award)Brain & Behavior Research Foundation (Young Investigator Award)National Science Foundation (U.S.)National Institutes of Health (U.S.) (Director’s New Innovator Award

    Signal transduction events induced by extracellular guanosine 5â€Čtriphosphate in excitable cells

    Get PDF
    A better understanding of the physiological effects of guanosine-based purines should help clarify the complex subject of purinergic signalling. We studied the effect of extracellular guanosine 5â€Čtriphosphate (GTP) on the differentiation of two excitable cell lines that both have specific binding sites for GTP: PC12 rat pheochromocytoma cells and C2C12 mouse skeletal muscle cells. PC12 cells can be differentiated into fully functional sympathetic-like neurons with 50â€Č00 ng ml−1 of nerve growth factor, whereas serum starvation causes C2C12 cells to differentiate into myotubes showing functional excitation–contraction coupling, with the expression of myosin heavy chain proteins. Our results show that GTP enhances the differentiation of both of these excitable cell lines. The early events in guanosine-based purine signal transduction appear to involve an increase in intracellular Ca2+ levels and membrane hyperpolarization. We further investigated the early activation of extracellular-regulated kinases and phosphoinositide 3-kinase in GTP-stimulated PC12 and C2C12 cells, respectively. We found that GTP promotes the activation of both kinases. Together, our results suggest that, even if there are some differences in the signalling pathways, GTP-induced differentiation in both cell lines is dependent on an increase in intracellular Ca2+
    • 

    corecore