492 research outputs found

    Trends in livestock

    Get PDF
    Cover title

    Extensions of adaptive slope-seeking for active flow control

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.To speed up gradient estimation in a slope-seeking controller two different modifications are proposed in this study. In a first approach, the gradient estimation is based on a locally identified black-box model. A further improvement is obtained by applying an extended Kalman filter to estimate the local gradient of an input—output map. Moreover, a simple method is outlined to adapt the search radius in the classical extremum- and slope-seeking approach to reduce the perturbations near the optimal state. To show the versatility of the slope-seeking controller for flow control applications two different wind tunnel experiments are considered, namely with a two-dimensional bluff body and a generic three-dimensional car model (Ahmed body).DFG, SFB 557, Beeinflussung komplexer turbulenter Scherströmunge

    Moments of the spin structure functions g(1)(p) and g(1)(d) for 0.05 \u3c Q(2) \u3c 3.0 GeV2

    Get PDF
    The spin structure functions g, for the proton and the deuteron have been measured over a wide kinematic range in x and Q(2) using 1.6 and 5.7 GeV longitudinally polarized electrons incident upon polarized NH3 and ND3 targets at Jefferson Lab. Scattered electrons were detected in the CEBAF Large Acceptance Spectrometer, for 0.05 \u3c Q(2) \u3c 5 GeV2 and W \u3c 3 GeV. The first moments of g(1) for the proton and deuteron are presented - both have a negative slope at low Q(2), as predicted by the extended Gerasimov-Drell-Hearn sum rule. The first extraction of the generalized forward spin polarizability of the proton gamma(p)(0) is also reported. This quantity shows strong Q(2) dependence at low Q(2). Our analysis of the Q(2) evolution of the first moment of g, shows agreement in leading order with Heavy Baryon Chiral Perturbation Theory. However, a significant discrepancy is observed between the gamma(p)(0) data and Chiral Perturbation calculations for gamma(p)(0), even at the lowest Q(2). (C) 2009 Elsevier B.V. All rights reserved

    A Search for Sigma^0_5, N^0_5 and Theta^++ Pentaquark States

    Full text link
    A high-resolution (sigma_instr. = 1.5 MeV) search for narrow states (Gamma < 10 MeV) with masses of M_x approx 1500-1850 MeV in ep -> e'K^+ X, e'K^- X and e' pi^+ X electroproduction at small angles and low Q^2 was performed. These states would be candidate partner states of the reported Theta^+(1540) pentaquark. No statistically significant signal was observed in any of the channels at 90% C.L. Upper limits on forward production were determined to be between 0.7% and 4.2% of the Lambda(1520) production cross section, depending on the channel and the assumed mass and width of the state.Comment: 5 pages, 5 figures, to appear in Phys. Rev. C, update with responses to referee suggestion

    Response theory for time-resolved second-harmonic generation and two-photon photoemission

    Full text link
    A unified response theory for the time-resolved nonlinear light generation and two-photon photoemission (2PPE) from metal surfaces is presented. The theory allows to describe the dependence of the nonlinear optical response and the photoelectron yield, respectively, on the time dependence of the exciting light field. Quantum-mechanical interference effects affect the results significantly. Contributions to 2PPE due to the optical nonlinearity of the surface region are derived and shown to be relevant close to a plasmon resonance. The interplay between pulse shape, relaxation times of excited electrons, and band structure is analyzed directly in the time domain. While our theory works for arbitrary pulse shapes, we mainly focus on the case of two pulses of the same mean frequency. Difficulties in extracting relaxation rates from pump-probe experiments are discussed, for example due to the effect of detuning of intermediate states on the interference. The theory also allows to determine the range of validity of the optical Bloch equations and of semiclassical rate equations, respectively. Finally, we discuss how collective plasma excitations affect the nonlinear optical response and 2PPE.Comment: 27 pages, including 11 figures, version as publishe

    Quark-Hadron Duality in Neutron (3He) Spin Structure

    Full text link
    We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_1 of the neutron and 3^3He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c)^2. Global duality is observed for the spin-structure function g_1 down to at least Q^2 = 1.8 (GeV/c)^2 in both targets. We have also formed the photon-nucleon asymmetry A_1 in the resonance region for 3He and found no strong Q^2-dependence above 2.2 (GeV/c)^2.Comment: 13 pages, 3 figure

    Moments of the neutron g2g_2 structure function at intermediate Q2Q^2

    Full text link
    We present new experimental results of the 3^3He spin structure function g2g_2 in the resonance region at Q2Q^2 values between 1.2 and 3.0 (GeV/c)2^2. Spin dependent moments of the neutron were then extracted. Our main result, the resonance contribution to the neutron d2d_2 matrix element, was found to be small at =2.4 (GeV/c)2^2 and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for 3^3He and the neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low xx unmeasured region. A small deviation was observed at Q2Q^2 values between 0.5 and 1.2 (GeV/c)2^2 for the neutron

    Parity-Violating Electron Scattering from 4He and the Strange Electric Form Factor of the Nucleon

    Full text link
    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from ^4He at an average scattering angle = 5.7 degrees and a four-momentum transfer Q^2 = 0.091 GeV^2. From these data, for the first time, the strange electric form factor of the nucleon G^s_E can be isolated. The measured asymmetry of A_PV = (6.72 +/- 0.84 (stat) +/- 0.21 (syst) parts per million yields a value of G^s_E = -0.038 +/- 0.042 (stat) +/- 0.010 (syst), consistent with zero

    Low Q^2 measurements of the proton form factor ratio mupGE/GMmu_p G_E / G_M

    Get PDF
    We present an updated extraction of the proton electromagnetic form factor ratio, mu_p G_E/G_M, at low Q^2. The form factors are sensitive to the spatial distribution of the proton, and precise measurements can be used to constrain models of the proton. An improved selection of the elastic events and reduced background contributions yielded a small systematic reduction in the ratio mu_p G_E/G_M compared to the original analysis.Comment: 12 pages, 5 figures, archival paper for proton form factor extraction from Jefferson Lab "LEDEX" experimen
    • …
    corecore