436 research outputs found

    SD 1313-0019 -- Another second-generation star with [Fe/H] = -5.0, observed with the Magellan Telescope

    Get PDF
    We present a Magellan/MIKE high-resolution (R ~ 35,000) spectrum of the ancient star SD 1313-0019 which has an iron abundance of [Fe/H] = -5.0, paired with a carbon enhancement of [C/Fe] ~ 3.0. The star was initially identified by Allende Prieto et al. in the BOSS survey. Its medium-resolution spectrum suggested a higher metallicity of [Fe/H] = -4.3 due to the CaII K line blending with a CH feature which is a common issue related to the search for the most iron-poor stars. This star joins several other, similar stars with [Fe/H] < -5.0 that all display a combination of low iron and high carbon abundances. Other elemental abundances of SD 1313-0019 follow that of more metal-rich halo stars. From fitting the abundance pattern with yields of Population III supernova, we conclude that SD 1313-0019 had only one massive progenitor star with 20 - 30 M_sun that must have undergone a mixing and fallback episode. Overall, there are now five stars known with [Fe/H] < -5.0 (1D LTE abundances). This population of second-generation stars strongly suggests massive first stars that almost exclusively produced large amounts of carbon through stellar winds and/or their mixing and fallback supernova explosions. As a consequence, their natal clouds -- presumably some early minihalo structures -- contained ample amounts of carbon and oxygen that likely facilitated the formation of these first low-mass stars.Comment: 7 pages and 3 figures, accepted by ApJ

    US National Gemini Office in the NOIRLab era

    Full text link
    This article presents an overview of the US National Gemini Office (US NGO) and its role within the International Gemini Observatory user community. Throughout the years, the US NGO charter changed considerably to accommodate the evolving needs of astronomers and the observatory. The current landscape of observational astronomy requires effective communication between stakeholders and reliable/accessible data reduction tools and products, which minimize the time between data gathering and publication of scientific results. Because of that, the US NGO heavily invests in producing data reduction tutorials and cookbooks. Recently, the US NGO started engaging with the Gemini user community through social media, and the results have been encouraging, increasing the observatory's visibility. The US NGO staff developed tools to assess whether the support provided to the user community is sufficient and effective, through website analytics and social media engagement numbers. These quantitative metrics serve as the baseline for internal reporting and directing efforts to new or current products. In the era of the NSF's National Optical-Infrared Astronomy Research Laboratory (NOIRLab), the US NGO is well-positioned to be the liaison between the US user base and the Gemini Observatory. Furthermore, collaborations within NOIRLab programs, such as the Astro Data Lab and the Time Allocation Committee, enhance the US NGO outreach to attract users and develop new products. The future landscape laid out by the Astro 2020 report confirms the need to establish such synergies and provide more integrated user support services to the astronomical community at large.Comment: 15 pages, 8 figures, published in the Journal of Astronomical Telescopes, Instruments, and System

    Abundances of carbon-enhanced metal-poor stars as constraints on their formation

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.Context. An increasing fraction of carbon-enhanced metal-poor (CEMP) stars is found as their iron abundance, [Fe/H], decreases below [Fe/H] =−2.0. The CEMP-s stars have the highest absolute carbon abundances, [C/H], and are thought to owe their enrichment in carbon and the slow neutron-capture (s-process) elements to mass transfer from a former asymptotic giant branch (AGB) binary companion. The most Fe-poor CEMP stars are normally single, exhibit somewhat lower [C/H] than CEMP-s stars, but show no s-process element enhancement (CEMP-no stars). Abundance determinations of CNO offer clues to their formation sites. Aims. Our aim is to use the medium-resolution spectrograph X-Shooter/VLT to determine stellar parameters and abundances for C, N, Sr, and Ba in several classes of CEMP stars in order to further classify and constrain the astrophysical formation sites of these stars. Methods. Atmospheric parameters for our programme stars were estimated from a combination of V−K photometry, model isochrone fits, and estimates from a modified version of the SDSS/SEGUE spectroscopic pipeline. We then used X-Shooter spectra in conjunction with the 1D local thermodynamic equilibrium spectrum synthesis code MOOG, 1D ATLAS9 atmosphere models to derive stellar abundances, and, where possible, isotopic 12C/13C ratios. Results. Abundances (or limits) of C, N, Sr, and Ba are derived for a sample of 27 faint metal-poor stars for which the X-Shooter spectra have sufficient signal-to-noise ratios (S/N). These moderate resolution, low S/N (~10−40) spectra prove sufficient to perform limited chemical tagging and enable assignment of these stars into the CEMP subclasses (CEMP-s and CEMP-no). According to the derived abundances, 17 of our sample stars are CEMP-s and 3 are CEMP-no, while the remaining 7 are carbon-normal. For four CEMP stars, the subclassification remains uncertain, and two of them may be pulsating AGB stars. Conclusions. The derived stellar abundances trace the formation processes and sites of our sample stars. The [C/N] abundance ratio is useful for identifying stars with chemical compositions unaffected by internal mixing, and the [Sr/Ba] abundance ratio allows us to distinguish between CEMP-s stars with AGB progenitors and the CEMP-no stars. Suggested formation sites for the latter include faint supernovae with mixing and fallback and/or primordial, rapidly-rotating, massive stars (spinstars). X-Shooter spectra have thus proved to be valuable tools in the continued search for their origin.Peer reviewe

    2MASS J18082002-5104378: The brightest (V=11.9) ultra metal-poor star

    Get PDF
    Context. The most primitive metal-poor stars are important for studying the conditions of the early galaxy and are also relevant to big bang nucleosynthesis. Aims. Our objective is to find the brightest (V<14) most metal-poor stars. Methods. Candidates were selected using a new method, which is based on the mismatch between spectral types derived from colors and observed spectral types. They were observed first at low resolution with EFOSC2 at the NTT/ESO to obtain an initial set of stellar parameters. The most promising candidate, 2MASS J18082002-5104378 (V=11.9), was observed at high resolution (R=50 000) with UVES at the VLT/ESO, and a standard abundance analysis was performed. Results. We found that 2MASS J18082002-5104378 is an ultra metal-poor star with stellar parameters Teff = 5440 K, log g = 3.0 dex, vt = 1.5 km/s, [Fe/H] = -4.1 dex. The star has [C/Fe]<+0.9 in a 1D analysis, or [C/Fe]<=+0.5 if 3D effects are considered; its abundance pattern is typical of normal (non-CEMP) ultra metal-poor stars. Interestingly, the star has a binary companion. Conclusions. 2MASS J1808-5104 is the brightest (V=11.9) metal-poor star of its category, and it could be studied further with even higher S/N spectroscopy to determine additional chemical abundances, thus providing important constraints to the early chemical evolution of our Galaxy.Comment: A&A Letter

    The role of binaries in the enrichment of the early Galactic halo. II. Carbon-Enhanced Metal-Poor Stars - CEMP-no stars

    Full text link
    The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon - the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds, or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Most programme stars exhibit no statistically significant radial-velocit variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2,000 days and normal eccentricity; the binary frequency for the sample is 17+-9%. The single stars mostly belong to the recently-identified ``low-C band'', while the binaries have higher absolute carbon abundances. We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic ISM by an even earlier, external source, strongly indicating that the CEMP-no stars are likely bona fide second-generation stars. We discuss potential production sites for carbon and its transfer across interstellar distances in the early ISM, and implications for the composition of high-redshift DLA systems. Abridged.Comment: 16 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Population Studies. XIII. A New Analysis of the Bidelman-MacConnell "Weak-Metal" Stars - Confirmation of Metal-Poor Stars in the Thick Disk of the Galaxy

    Get PDF
    A new set of very high signal-to-noise (S/N > 100/1), medium-resolution (R~3000) optical spectra have been obtained for 302 of the candidate "weak-metal" stars selected by Bidelman & MacConnell. We use these data to calibrate the recently developed generalization of the SEGUE Stellar Parameter Pipeline, and obtain estimates of the atmospheric parameters (Teff, log g , and [Fe/H]) for these non-SDSS/SEGUE data; we also obtain estimates of [C/Fe]. The new abundance measurements are shown to be consistent with available high-resolution spectroscopic determinations, and represent a substantial improvement over the accuracies obtained from the previous photometric estimates reported in Paper I of this series. The apparent offset in the photometric abundances of the giants in this sample noted by several authors is confirmed by our new spectroscopy; no such effect is found for the dwarfs. The presence of a metal-weak thick-disk (MWTD) population is clearly supported by these new abundance data. Some 25% of the stars with metallicities -1.8 < [Fe/H] <= -0.8 exhibit orbital eccentricities e < 0.4, yet are clearly separated from members of the inner-halo population with similar metallicities by their location in a Lindblad energy vs. angular momentum diagram. A comparison is made with recent results for a similar-size sample of RAVE stars from Ruchti et al. We conclude, based on both of these samples, that the MWTD is real, and must be accounted for in discussions of the formation and evolution of the disk system of the Milky Way.Comment: 45 pages, 14 figures; accepted for publication in Ap
    corecore