3,133 research outputs found

    Effective potential at finite temperature in a constant hypermagnetic field: Ring diagrams in the Standard Model

    Full text link
    We study the symmetry breaking phenomenon in the standard model during the electroweak phase transition in the presence of a constant hypermagnetic field. We compute the finite temperature effective potential up to the contribution of ring diagrams in the weak field, high temperature limit and show that under these conditions, the phase transition becomes stronger first order.Comment: 15 pages, 8 Postscript figure

    Effective potential at finite temperature in a constant magnetic field I: Ring diagrams in a scalar theory

    Full text link
    We study symmetry restoration at finite temperature in the theory of a charged scalar field interacting with a constant, external magnetic field. We compute the finite temperature effective potential including the contribution from ring diagrams. We show that in the weak field case, the presence of the field produces a stronger first order phase transition and that the temperature for the onset of the transition is lower, as compared to the case without magnetic field.Comment: Expanded comments, 4 figures added. Conclusions unchanged. Version to match published pape

    Learning environment properties in Partially Observable Monte Carlo Planning

    Get PDF
    We tackle the problem of learning state-variable relationships in Partially Observable Markov Decision Processes to improve planning performance on mobile robots. The proposed approach extends Partially Observable Monte Carlo Planning (POMCP) and represents state-variable relationships with Markov Random Fields. A ROS-based implementation of the approach is proposed and evaluated in rocksample, a standard benchmark for probabilistic planning under uncertainty. Experiments have been performed in simulation with Gazebo. Results show that the proposed approach allows to effectively learn state- variable probabilistic constraints on ROS-based robotic platforms and to use them in subsequent episodes to outperform standard POMC

    Exact inflationary solutions

    Get PDF
    We present a new class of exact inflationary solutions for the evolution of a universe with spatial curvature, filled with a perfect fluid, a scalar field with potential V±(ϕ)=λ(ϕ2±Ύ2)2V_{\pm}(\phi)=\lambda(\phi^2\pm\delta^2)^2 and a cosmological constant Λ\Lambda. With the V+(ϕ)V_+(\phi) potential and a negative cosmological constant, the scale factor experiments a graceful exit. We give a brief discussion about the physical meaning of the solutions.Comment: 10 pages, revtex file, 6 figures included with epsf. To be published in IJMP-

    Improving Rigid 3-D Calibration for Robotic Surgery

    Get PDF
    Autonomy is the next frontier of research in robotic surgery and its aim is to improve the quality of surgical procedures in the next future. One fundamental requirement for autonomy is advanced perception capability through vision sensors. In this article, we propose a novel calibration technique for a surgical scenario with a da Vinci Research Kit (dVRK) robot. Camera and robotic arms calibration are necessary to precise position and emulate expert surgeon. The novel calibration technique is tailored for RGB-D cameras. Different tests performed on relevant use cases prove that we significantly improve precision and accuracy with respect to state of the art solutions for similar devices on a surgical-size setups. Moreover, our calibration method can be easily extended to standard surgical endoscope used in real surgical scenario

    In vitro inhibitory effect of two commercial probiotics on chromogenic actinomycetes

    Get PDF
    Black extrinsic discoloration is a common clinical and aesthetic problem. This study aims to evaluate the potential in vitro antagonistic activity of two commercial probiotics, Streptococcus salivarius M18 and Lactobacillus reuteri ProDentis, against microorganisms associated with black stains

    The effects of Non-Gaussian initial conditions on the structure and substructure of Cold Dark Matter halos

    Full text link
    We study the structure and substructure of halos obtained in N-body simulations for a Lambda Cold Dark Matter (LCDM) cosmology with non-Gaussian initial conditions (NGICs). The initial statistics are lognormal in the gravitational potential field with positive (LNp) and negative (LNn) skewness; the sign of the skewness is conserved by the density field, and the power spectrum is the same for all the simulations. Our aim is not to test a given non-Gaussian statistics, but to explore the generic effect of positive- and negative-skew statistics on halo properties. From our low-resolution simulations, we find that LNp (LNn) halos are systematically more (less) concentrated than their Gaussian counterparts. This result is confirmed by our Milky Way- and cluster-sized halos resimulated with high-resolution. In addition, they show inner density profiles that depend on the statistics: the innermost slopes of LNp (LNn) halos are steeper (shallower) than those obtained from the corresponding Gaussian halos. A subhalo population embedded in LNp halos is more susceptible to destruction than its counterpart inside Gaussian halos. On the other hand, subhalos in LNn halos tend to survive longer than subhalos in Gaussian halos. The spin parameter probability distribution of LNp (LNn) halos is skewed to smaller (larger) values with respect to the Gaussian case. Our results show how the statistics of the primordial density field can influence some halo properties, opening this the possibility to constrain, although indirectly, the primordial statistics at small scale.Comment: 15 pages, 8 figures. Slight corrections after referee report. To appear in ApJ, v598, November 20, 200
    • 

    corecore