28 research outputs found

    Clustering ICU patients with sepsis based on the patterns of their circulating biomarkers: A secondary analysis of the CAPTAIN prospective multicenter cohort study.

    Full text link
    peer reviewed[en] BACKGROUND: Although sepsis is a life-threatening condition, its heterogeneous presentation likely explains the negative results of most trials on adjunctive therapy. This study in patients with sepsis aimed to identify subgroups with similar immune profiles and their clinical and outcome correlates. METHODS: A secondary analysis used data of a prospective multicenter cohort that included patients with early assessment of sepsis. They were described using Predisposition, Insult, Response, Organ failure sepsis (PIRO) staging system. Thirty-eight circulating biomarkers (27 proteins, 11 mRNAs) were assessed at sepsis diagnosis, and their patterns were determined through principal component analysis (PCA). Hierarchical clustering was used to group the patients and k-means algorithm was applied to assess the internal validity of the clusters. RESULTS: Two hundred and three patients were assessed, of median age 64.5 [52.0-77.0] years and SAPS2 score 55 [49-61] points. Five main patterns of biomarkers and six clusters of patients (including 42%, 21%, 17%, 9%, 5% and 5% of the patients) were evidenced. Clusters were distinguished according to the certainty of the causal infection, inflammation, use of organ support, pro- and anti-inflammatory activity, and adaptive profile markers. CONCLUSIONS: In this cohort of patients with suspected sepsis, we individualized clusters which may be described with criteria used to stage sepsis. As these clusters are based on the patterns of circulating biomarkers, whether they might help to predict treatment responsiveness should be addressed in further studies. TRIAL REGISTRATION: The CAPTAIN study was registered on clinicaltrials.gov on June 22, 2011, # NCT01378169

    Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: the CAPTAIN prospective multicenter cohort study.

    Full text link
    PURPOSE: Sepsis and non-septic systemic inflammatory response syndrome (SIRS) are the same syndromes, differing by their cause, sepsis being secondary to microbial infection. Microbiological tests are not enough to detect infection early. While more than 50 biomarkers have been proposed to detect infection, none have been repeatedly validated. AIM: To assess the accuracy of circulating biomarkers to discriminate between sepsis and non-septic SIRS. METHODS: The CAPTAIN study was a prospective observational multicenter cohort of 279 ICU patients with hypo- or hyperthermia and criteria of SIRS, included at the time the attending physician considered antimicrobial therapy. Investigators collected blood at inclusion to measure 29 plasma compounds and ten whole blood RNAs, and-for those patients included within working hours-14 leukocyte surface markers. Patients were classified as having sepsis or non-septic SIRS blindly to the biomarkers results. We used the LASSO method as the technique of multivariate analysis, because of the large number of biomarkers. RESULTS: During the study period, 363 patients with SIRS were screened, 84 having exclusion criteria. Ninety-one patients were classified as having non-septic SIRS and 188 as having sepsis. Eight biomarkers had an area under the receiver operating curve (ROC-AUC) over 0.6 with a 95% confidence interval over 0.5. LASSO regression identified CRP and HLA-DRA mRNA as being repeatedly associated with sepsis, and no model performed better than CRP alone (ROC-AUC 0.76 [0.68-0.84]). CONCLUSIONS: The circulating biomarkers tested were found to discriminate poorly between sepsis and non-septic SIRS, and no combination performed better than CRP alone

    Simple scoring system to predict in-hospital mortality after surgery for infective endocarditis

    Get PDF
    BACKGROUND: Aspecific scoring systems are used to predict the risk of death postsurgery in patients with infective endocarditis (IE). The purpose of the present study was both to analyze the risk factors for in-hospital death, which complicates surgery for IE, and to create a mortality risk score based on the results of this analysis. METHODS AND RESULTS: Outcomes of 361 consecutive patients (mean age, 59.1\ub115.4 years) who had undergone surgery for IE in 8 European centers of cardiac surgery were recorded prospectively, and a risk factor analysis (multivariable logistic regression) for in-hospital death was performed. The discriminatory power of a new predictive scoring system was assessed with the receiver operating characteristic curve analysis. Score validation procedures were carried out. Fifty-six (15.5%) patients died postsurgery. BMI >27 kg/m2 (odds ratio [OR], 1.79; P=0.049), estimated glomerular filtration rate 55 mm Hg (OR, 1.78; P=0.032), and critical state (OR, 2.37; P=0.017) were independent predictors of in-hospital death. A scoring system was devised to predict in-hospital death postsurgery for IE (area under the receiver operating characteristic curve, 0.780; 95% CI, 0.734-0.822). The score performed better than 5 of 6 scoring systems for in-hospital death after cardiac surgery that were considered. CONCLUSIONS: A simple scoring system based on risk factors for in-hospital death was specifically created to predict mortality risk postsurgery in patients with IE

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Nanopatterned surfaces to control the development of bacteria and mammalian cells

    No full text
    The development of surfaces controlling both bacterial and mammalian cell behaviors is of a great interest for applications in tissue engineering. The challenge is to produce surfaces promoting the development of mammalian cells, such as stem cells, while preventing the bacterial colonization. Besides the conventional approaches using antibiotics and bioactive compounds, recent studies showed that surface properties such as topography, stiffness, biochemistry and their patterning can be used to control mammalian or bacterial cells. In this context, this thesis explores the fabrication of chemical and topographical patterns composed of nanometer lines of hydrophilic polymer brush grafted with peptides, to control both cell types. Three peptides were used: a cell-adhesive peptide (RGD-C) and two bactericidal peptides, i.e. cathelicidin (C-LL37) and magainin I (MAG-C). The behaviors of Escherichia coli (E. coli) and stem cells from the apical papilla (SCAPs) were investigated on these surfaces. It was evidenced that C-LL37 and RGD-C patterns showed bactericidal and bioadhesive properties towards E. coli and SCAPs, respectively, while the antibacterial activity of MAG-C-modied surfaces was limited. Moreover, the comparison of SCAP behavior on homogeneous and patterned surfaces, revealed that nanopatterns grafted with RGD-C or a C-LL37/RGD-C mixture induced a clear variation of SCAP morphology. Thus, the neuronal, osteogenic and adipogenic expression of differentiation markers by SCAPs on patterned surfaces was investigated. The results obtained during this PhD evidence the potential utility of the peptide-modied nanopatterns for applications in biomedical applications.(FSA - Sciences de l'ingénieur) -- UCL, 201

    DNAemia detection by multiplex PCR and biomarkers for infection in systemic inflammatory response syndrome patients.

    Get PDF
    Fast and reliable assays to precisely define the nature of the infectious agents causing sepsis are eagerly anticipated. New molecular biology techniques are now available to define the presence of bacterial or fungal DNA within the bloodstream of sepsis patients. We have used a new technique (VYOO(R)) that allows the enrichment of microbial DNA before a multiplex polymerase chain reaction (PCR) for pathogen detection provided by SIRS-Lab (Jena, Germany). We analyzed 72 sepsis patients and 14 non-infectious systemic inflammatory response syndrome (SIRS) patients. Among the sepsis patients, 20 had a positive blood culture and 35 had a positive microbiology in other biological samples. Of these, 51.4% were positive using the VYOO(R) test. Among the sepsis patients with a negative microbiology and the non-infectious SIRS, 29.4% and 14.2% were positive with the VYOO(R) test, respectively. The concordance in bacterial identification between microbiology and the VYOO(R) test was 46.2%. This study demonstrates that these new technologies offer great hopes, but improvements are still needed
    corecore