23 research outputs found

    Justiça social e política educacional: extensão das vagas escolares na educação infantil

    Get PDF
    O objetivo desta pesquisa foi investigar se as decisões que estão garantindo vagas para crianças fora da faixa etária prevista na Constituição Federal têm efetivado o direito à educação na Região Metropolitana de Campinas. Para responder ao problema fez-se um diagnóstico utilizando metodologia quantitativa e identificação das ações dos Poderes Públicos por meio da análise institucional. Identificou-se que as demandas do Parquet por vagas para crianças fora da faixa etária prevista são significativas e quase sempre atendidas pelo Judiciário, que justifica a efetivação do direito com base em uma interpretação extensiva inexistente na Carta Magna. Tal posicionamento prejudica o sucesso da implementação da política por não respeitar as delimitações dos textos legais, reduzindo a efetivação dos direitos das crianças a uma simples vaga em instituição escolar, sem considerar uma discussão de Direitos Humanos

    DIMENSÕES A SEREM CONSIDERADAS PARA A DISCUSSÃO DE POLÍTICAS EDUCACIONAIS NA REALIDADE AMAZÔNICA

    Get PDF
    No contexto de uma pesquisa financiada no escopo do Programa de Cooperação Acadêmica – PROCAD e nomeada "As Experiências Pedagógicas das Políticas de Educação Integral na Amazônia: Rede de Pesquisa e Formação Acadêmica" envolvendo três Universidades (Universidade Estadual de Campinas - UNICAMP; Universidade Federal de Rondônia - UNIR e Universidade Federal do Oeste do Pará - UFOPA), este trabalho visa a parte norte do Brasil, em particular a cidade de Santarém, no estado do Pará. Nosso objetivo é problematizar e refletir sobre a relação entre três dimensões: socioeconômica, educacional e ambiental, que, embora apresentadas separadamente, são imbricadas e devem ser consideradas em uma perspectiva dialógica na discussão das políticas educacionais na realidade amazônica. A metodologia baseia-se em pesquisa bibliográfica e documental, de modo que os dados apresentados são oriundos de órgãos públicos nacionais e estaduais. Portanto, a estrutura do artigo possui uma introdução para apresentar a área onde o estudo é conduzido, seguido da exposição dos dados de cada dimensão, terminando com algumas considerações para discutir políticas públicas educacionais na região amazônica.   &nbsp

    Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials

    Get PDF
    [EN] Combining several theories this paper presents a general multiphysics framework applied to the study of coupled and active materials, considering mechanical, electric, magnetic and thermal fields. The framework is based on thermodynamic equilibrium and non-equilibrium interactions, both linked by a two-temperature model. The multi-coupled governing equations are obtained from energy, momentum and entropy balances; the total energy is the sum of thermal, mechanical and electromagnetic parts. The momentum balance considers mechanical plus electromagnetic balances; for the latter the Abraham rep- resentation using the Maxwell stress tensor is formulated. This tensor is manipulated to automatically fulfill the angular momentum balance. The entropy balance is for- mulated using the classical Gibbs equation for equilibrium interactions and non-equilibrium thermodynamics. For the non-linear finite element formulations, this equation requires the transformation of thermoelectric coupling and conductivities into tensorial form. The two-way thermoe- lastic Biot term introduces damping: thermomechanical, pyromagnetic and pyroelectric converse electromagnetic dynamic interactions. Ponderomotrix and electromagnetic forces are also considered. The governing equations are converted into a variational formulation with the resulting four-field, multi-coupled formalism implemented and val- idated with two custom-made finite elements in the research code FEAP. Standard first-order isoparametric eight-node elements with seven degrees of freedom (dof) per node (three displacements, voltage and magnetic scalar potentials plus two temperatures) are used. Non-linearities and dynamics are solved with Newton-Raphson and New- mark-b algorithms, respectively. Results of thermoelectric, thermoelastic, thermomagnetic, piezoelectric, piezomag- netic, pyroelectric, pyromagnetic and galvanomagnetic interactions are presented, including non-linear depen- dency on temperature and some second-order interactions.This research was partially supported by grants CSD2008-00037 Canfranc Underground Physics, Polytechnic University of Valencia under programs PAID 02-11-1828 and 05-10-2674. The first author used the grant Generalitat Valenciana BEST/2014/232 for the completion of this work.Pérez-Aparicio, JL.; Palma, R.; Taylor, R. (2016). Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials. Archives of Computational Methods in Engineering. 23:535-583. https://doi.org/10.1007/s11831-015-9149-9S53558323Abraham M (1910) Sull’elettrodinamica di Minkowski. Rend Circ Mat 30:33–46Allik H, Hughes TJR (1970) Finite elment method for piezoelectric vibration. Int J Numer Methods Eng 2:151–157Antonova EE, Looman DC (2005) Finite elements for thermoelectric device analysis in ANSYS. In: International conference on thermoelectricsAtulasimha J, Flatau AB (2011) A review of magnetostrictive iron–gallium alloys. Smart Mater Struct 20:1–15Ballato A (1995) Piezoelectricity: old effect, new thrusts. IEEE Trans Ultrason Ferroelectr Freq Control 42(5):916–926Baoyuan S, Jiantong W, Jun Z, Min Q (2003) A new model describing physical effects in crystals: the diagrammatic and analytic methods for macro-phenomenological theory. J Mater Process Technol 139:444–447Bargmann S, Steinmann P (2005) Finite element approaches to non-classical heat conduction in solids. Comput Model Eng Sci 9(2):133–150Bargmann S, Steinmann P (2006) Theoretical and computational aspects of non-classical thermoelasticity. Comput Methods Appl Mech Eng 196:516–527Bargmann S, Steinmann P (2008) Modeling and simulation of first and second sound in solids. Int J Solids Struct 45:6067–6073Barnett SM (2010) Resolution of the Abraham–Minkowski dilemma. Phys Rev Lett 104:070401Benbouzid MH, Meunier G, Meunier G (1995) Dynamic modelling of giant magnetostriction in Terfenol-D rods by the finite element method. IEEE Trans Magn 31(3):1821–1824Benbouzid MH, Reyne G, Meunier G (1993) Nonlinear finite element modelling of giant magnetostriction. IEEE Trans Magn 29(6):2467–2469Benbouzid MH, Reyne G, Meunier G (1995) Finite elment modelling of magnetostrictive devices: investigations for the design of the magnetic circuit. IEEE Trans Magn 31(3):1813–1816Besbes M, Ren Z, Razek A (1996) Finite element analysis of magneto-mechanical coupled phenomena in magnetostrictive materials. IEEE Trans Magn 32(3):1058–1061Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27(3):240–253Bisio G, Cartesegna M, Rubatto G (2001) Thermodynamic analysis of elastic systems. Energy Convers Manag 42:799–812Blun SL (1974) Materials for radiation detection. National Academy of Sciences, WashingtonBonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, CambridgeBorovik-Romanov AS (1960) Piezomagnetism in the antiferromagnetic fluorides of cobalt and manganese. Sov Phys 11:786Bowyer P (2005) The momentum of light in media: the Abraham–Minkowski controversy. http://bit.ly/1M7wyATBrauer JR, Ruehl JJ, MacNeal BE, Hirtenfelder F (1995) Finite element analysis of Hall effect and magnetoresistance. IEEE Trans Electron Devices 42(2):328–333Bustamante R, Dorfmann A, Ogden RW (2009) On electric body forces and Maxwell stresses in nonlinearly electroelastic solids. Int J Eng Sci 47:1131–1141Callen HB (1948) The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys Rev 73(11):1349–1358Callen HB (1985) Thermodynamics and an introduction to thermostatistics. Wiley, New YorkCarter JP, Booker JR (1989) Finite element analysis of coupled thermoelasticity. Comput Struct 31(1):73–80Cattaneo C (1938) Sulla conduzione del calore. Atti Semin Mat Fis Univ Modena 3:83–1013Chaplik AV (2000) Some exact solutions for the classical Hall effect in an inhomogeneous magnetic field. JETP Lett 72:503Chen PJ, Gurtin ME (1968) On a theory of heat conduction involving two temperatures. J Z Angew Math Phys ZAMP 19(4):614–627Chu LJ, Haus HA, Penfield P (1966) The force density in polarizable and magnetizable fluids. In: Proceedings of the IEEEClin Th, Turenne S, Vasilevskiy D, Masut RA (2009) Numerical simulation of the thermomechanical behavior of extruded bismuth telluride alloy module. J Electron Mater 38(7):994–1001Coleman BD (1964) Thermodynamics of materials with memory. Arch Ration Mech Anal 17:1–46de Groot SR (1961) Non-equilibrium themodynamics of systems in an electromagnetic field. J Nucl Energy C Plasma Phys 2:188–194de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover, MineolaDebye P (1913) On the theory of anomalous dispersion in the region of long-wave electromagnetic radiation. Verh dtsch phys Ges 15:777–793del Castillo LF, García-Colín LS (1986) Thermodynamic basis for dielectric relaxation in complex materials. Phys Rev B 33(7):4944–4951Delves RT (1964) Figure of merit for Ettingshausen cooling. Br J Appl Phys 15:105–106Dorf RC (1997) The electrical engineering handbook. CRC Press, UKEarle R, Richards JFC (1956) Theophrastus: on stones. Ohio State University, ColumbusEbling D, Jaegle M, Bartel M, Jacquot A, Bottner H (2009) Multiphysics simulation of thermoelectric systems for comparison with experimental device performance. J Electron Mater 38(7):1456–1461El-Karamany AS, Ezzat MA (2011) On the two-temperature Green–Naghdi thermoelasticity theories. J Therm Stress 34:1207–1226Eringen AC (1980) Mechanics of continua. Robert E Krieger, MalabarEringen AC, Maugin GA (1990) Electrodynamics of continua I. Springer, New YorkErsoy Y (1984) A new nonlinear constitutive theory for conducting magnetothermoelastic solids. Int J Eng Sci 22(6):683–705Ersoy Y (1986) A new nonlinear constitutive theory of electric and heat conductions for magnetoelastothermo-electrical anisotropic solids. Int J Eng Sci 24(6):867–882Ferrari A, Mittica A (2013) Thermodynamic formulation of the constitutive equations for solids and fluids. Energy Convers Manag 66:77–86Galushko D, Ermakov N, Karpovski M, Palevski A, Ishay JS, Bergman DJ (2005) Electrical, thermoelectric and thermophysical properties of hornet cuticle. Semicond Sci Technol 20:286–289Gao JL, Du QG, Zhang XD, Jiang XQ (2011) Thermal stress analysis and structure parameter selection for a Bi2Te3-based thermoelectric module. J Electron Mater 40(5):884–888Gaudenzi P, Bathe KJ (1995) An iterative finite element procedure for the analysis of piezoelectric continua. J Intell Mater Syst Struct 6:266–273Gavela D, Pérez-Aparicio JL (1998) Peltier pellet analysis with a coupled, non-linear 3D finite element model. In: 4th European workshop on thermoelectricsGoudreau GL, Taylor RL (1972) Evaluation of numerical integration methods in elastodynamics. Comput Methods Appl Mech Eng 2:69–97Griffiths DJ (1999) Introduction to electrodynamics. Prentice-Hall Inc, Upper Saddle RiverGros L, Reyne G, Body C, Meunier G (1998) Strong coupling magneto mechanical methods applied to model heavy magnetostrictive actuators. IEEE Trans Magn 34(5):3150–3153Gurtin ME, Williams WO (1966) On the Clausius–Duhem inequality. J Z Angew Math Phys ZAMP 17(5):626–633Hamader VM, Patil TA, Chovan SH (1987) Free vibration response of two-dimensional magneto-electro-elastic laminated plates. Build Mater Sci 9:249–253Hausler C, Milde G, Balke H, Bahr HA, Gerlach G (2001) 3-D modeling of pyroelectric sensor arrays part I: multiphysics finite-element simulation. IEEE Sens J 8(12):2080–2087He Y (2004) Heat capacity, thermal conductivity and thermal expansion of barium titanate-based ceramics. Thermochimica 419:135–141Hernández-Lemus E, Orgaz E (2002) Hysteresis in nonequilibrium steady states: the role of dissipative couplings. Rev Mex Fís 48:38–45Hinds EA (2009) Momentum exchange between light and a single atom: Abraham or Minkowski? Phys Rev Lett 102:050403Hirsinger L, Billardon R (1995) Magneto-elastic finite element analysis including magnetic forces and magnetostriction effects. IEEE Trans Magn 31(3):1877–1880Huang MJ, Chou PK, Lin MC (2008) An investigation of the thermal stresses induced in a thin-film thermoelectric cooler. J Therm Stress 31:438–454IEEE Standards Board (1988) IEEE standard on piezoelectricity. ANSI/IEEE Std 176-1987. doi: 10.1109/IEEESTD.1988.79638IEEE Standards Board (1991) IEEE standard on magnetostrictive materials: piezomagnetic nomenclature. IEEE Std 319-1990. doi: 10.1109/IEEESTD.1991.101048Ioffe Institute (2013) INSb—indium antimonide. Ioffe Institute. www.ioffe.rssi.ru/SVA/NSM/Semicond/InSb/index.htmlJackson JD (1962) Classical electrodynamics. Wiley, New YorkJaegle M (2008) Multiphysics simulation of thermoelectric systems—modeling of Peltier—cooling and thermoelectric generation. In: Proceedings of the COMSOLJaegle M, Bartel M, Ebling D, Jacquot A, Bottner H (2008) Multiphysics simulation of thermoelectric systems. In: European conference on thermoelectrics ECT2008Jiménez JL, Campos I (1996) Advanced electromagnetism: foundations, theory and applications, chapter The balance equations of energy and momentum in classical electrodynamics. World Scientific Publishing, SingaporeJohnstone S (2008) Is there potential for use of the Hall effect in analytical science? Analyst 133:293–296Jou D, Lebon G (1996) Extended irreversible thermodynamics. Springer, BerlinKaltenbacher M, Kaltenbacher B, Hegewald T, Lerch R (2010) Finite element formulation for ferroelectric hysteresis of piezoelectric materials. J Intell Mater Syst Struct 21:773–785Kaltenbacher M, Meiler M, Ertl M (2009) Physical modeling and numerical computation of magnetostriction. Int J Comput Math Electr Electron Eng 28(4):819–832Kamlah M, Bohle U (2001) Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int J Solids Struct 38:605–633Kannan KS, Dasgupta A (1997) A nonlinear Galerkin finite-element theory for modeling magnetostrictive smart structures. Smart Mater Struct 6:341–350Kiang J, Tong L (2010) Nonlinear magneto-mechanical finite element analysis of Ni–Mn–Ga single crystals. Smart Mater Struct 19:1–17Kinsler P, Favaro A, McCall MW (2009) Four Poynting theorems. Eur J Phys 30:983–993Klinckel S, Linnemann K (2008) A phenomenological constitutive model for magnetostrictive materials and ferroelectric ceramics. Proc Appl Math Mech 8:10507–10508Kosmeier D (2013) Hornets: Gentle Giants! Wikipedia: the free encyclopedia. www.hornissenschutz.de/hornets.htmLahmer T (2008) Forward and inverse problems in piezoelectricity. PhD thesis, Universität Erlangen-NürnbergLandau LD, Lifshitz EM (1982) Mechanics. Butterworth-Heinemann, OxfordLandau LD, Lifshitz EM (1984) Electrodynamics of continuous media. Pergamon Press, OxfordLandis CM (2002) A new finite-element formulation for electromechanical boundary value problems. Int J Numer Methods Eng 55:613–628Díaz Lantada A (2011) Handbook of active materials for medical devices: advances and applications. CRC Press, Boca RatonLebon G, Jou D, Casas-Vázquez J (2008) Understanding non-equilibrium thermodynamics. Springer, BerlinLinnemann K, Klinkel S (2006) A constitutive model for magnetostrictive materials—theory and finite element implementation. Proc Appl Math Mech 6:393–394Linnemann K, Klinkel S, Wagner W (2009) A constitutive model for magnetostrictive and piezoelectric materials. Int J Solids Struct 46:1149–1166Llebot JE, Jou D, Casas-Vázquez J (1983) A thermodynamic approach to heat and electric conduction in solids. Physica 121(A):552–562Lu X, Hanagud V (2004) Extended irreversible thermodynamics modeling for self-heating and dissipation in piezoelectric ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 51(12):1582–1592Lubarda VA (2004) On thermodynamic potentials in linear thermoelasticity. Int J Solids Struct 41:7377–7398Mansuripur M (2012) Trouble with the lorentz law of force: incompatibility with special relativity and momentum conservation. Phys Rev Lett 108:193901Maruszewski B, Lebon G (1986) An extended irreversible thermodynamic description of electrothermoelastic semiconductors. Int J Eng Sci 24(4):583–593McMeeking RM, Landis CM (2005) Electrostatic forces and stored energy for deformable dielectric materials. J Appl Mech 72:581–590McMeeking RM, Landis CM, Jimenez MA (2007) A principle of virtual work for combined electrostatic and mechanical loading of materials. Int J Non Linear Mech 42:831–838MELCOR (2000) Thermoelectric handbook. Melcor, a unit of Laird Technologies. http://www.lairdtech.comMinkowski H (1908) Nachr. ges. wiss. Gottingen 53Naranjo B, Gimzewski JK, Putterman S (2005) Observation of nuclear fusion driven by a pyroelectric crystal. Nature 28(434):1115–1117Nédélec JC (1980) Mixed finite elements in R3{R}^3 R 3 . Numer Math 35:314–345Nettleton RE, Sobolev SL (1995) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part I. approaches and scalar rate processes. J Non-Equilib Thermodyn 20:205–229Nettleton RE, Sobolev SL (1995) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part II. vector transport processes, shear relaxation and rheology. J Non-Equilib Thermodyn 20:297–331Nettleton RE, Sobolev SL (1996) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part III. wave phenomena. J Non-Equilib Thermodyn 21:1–16Newmark N (1959) A method of computation for structural dynamics. ASCE J Eng Mech 85:67–94Newnham RE (2005) Properties of materials: anisotropy, symmetry, structure. Oxford University Press, OxfordNour AE, Abd-Alla N, Maugin GA (1990) Nonlinear equations for thermoelastic magnetizable conductors. Int J Eng Sci 27(7):589–603Nowacki A (1962) International series of monographs in aeronautics and astronautics. Pergamon Press, OxfordOkumura H, Hasegawa Y, Nakamura H, Yamaguchi S (1999) A computational model of thermoelectric and thermomagnetic semiconductors. In: 18th international conference on thermoelectricsOkumura H, Yamaguchi S, Nakamura H, Ikeda K, Sawada K (1998) Numerical computation of thermoelectric and thermomagnetic effects. In: 17th international conference on thermoelectricsOliver X, Agelet C (2000) Continuum mechanics for engineers. Edicions UPC, Barcelona. http://hdl.handle.net/2099.3/36197Shankar K, Kondaiah P, Ganesan N (2013) Pyroelectric and pyromagnetic effects on multiphase magneto-electro-elastic cylindrical shells for axisymmetric temperature. Smart Mater Struct 22(2):025007Palma R, Pérez-Aparicio JL, Bravo R (2013) Study of hysteretic thermoelectric behavior in photovoltaic materials using the finite element method, extended thermodynamics and inverse problems. Energy Convers Manag 65:557–563Palma R, Pérez-Aparicio JL, Taylor RL (2012) Non-linear finite element formulation applied to thermoelectric materials under hyperbolic heat conduction model. Comput Method Appl Mech Eng 213–216:93–103Palma R, Rus G, Gallego R (2009) Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics. Mech Mater 41:1000–1016Pérez-Aparicio JL, Gavela D (1998) 3D, non-linear coupled, finite element model of thermoelectricity. In: 4th European workshop on thermoelectricsPérez-Aparicio JL, Palma R, Taylor RL (2012) Finite element analysis and material sensitivity of Peltier thermoelectric cells coolers. Int J Heat Mass Transf 55:1363–1374Pérez-Aparicio JL, Sosa H (2004) A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials. Smart Mater Struct 13:493–502Perez-Aparicio JL, Sosa H, Palma R (2007) Numerical investigations of field-defect interactions in piezoelectric ceramics. Int J Solids Struct 44:4892–4908Pérez-Aparicio JL, Taylor RL, Gavela D (2007) Finite element analysis of nonlinear fully coupled thermoelectric materials. Comput Mech 40:35–45Qi H, Fang D, Yao Z (1997) FEM analysis of electro-mechanical coupling effect of piezoelectric materials. Comput Mater Sci 8:283–290Pérez-Aparicio JL, Palma R, Abouali-Sánchez S (2014) Complete finite element method analysis of galvanomagnetic and thermomagnetic effects. Appl Therm Eng (submitted)Perez-Aparicio JL, Palma R, Moreno-Navarro P (2014) Elasto-thermoelectric non-linear, fully coupled, and dynamic finite element analysis of pulsed thermoelectrics. Appl Therm Eng (submitted)Ramírez F, Heyliger PR, Pan E (2006) Free vibration response of two-dimensional magneto-electro-elastic laminated plates. J Sound Vib 292:626–644Reitz JR, Milford FJ (1960) Foundations of electromagnetic theory. Addison-Wesley, BostonReng Z, Ionescu B, Besbes M, Razek A (1995) Calculation of mechanical deformation of magnetic materials in electromagnetic devices. IEEE Trans Magn 31(3):1873–1876Restuccia L (2010) On a thermodynamic theory for magnetic relaxation phenomena due to n microscopic phenomena described by n internal variables. J Non-Equilib Thermodyn 35:379–413Restuccia L, Kluitenberg GA (1988) On generalizations of the Debye equation for dielectric relaxation. Phys A 154:157–182Restuccia L, Kluitenberg GA (1992) On the heat dissipation function for dielectric relaxation phenomena in anisotropic media. Int J Eng Sci 30(3):305–315Riffat SB, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23:913–935Rinaldi C, Brenner H (2002) Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress? Phys Rev E 65:036615Rowe DM (ed) (1995) CRC handbook of thermoelectrics. CRC Press, UKRus G, Palma R, Pérez-Aparicio JL (2009) Optimal measurement setup for damage detection in piezoelectric plates. Int J Eng Sci 47:554–572Rus G, Palma R, Pérez-Aparicio JL (2012) Experimental design of dynamic model-based damage identification in piezoelectric ceramics. Mech Syst Signal Process 26:268–293Sadiku MNO (2001) Numerical techniques in electromagnetics. CRC Press LLC, Boca RatonSemenov AS, Kessler H, Liskowsky A, Balke H (2006) On a vector potential formulation for 3D electromechanical finite element analysis. Commun Numer Methods Eng 22:357–375Serra E, Bonaldi M (2008) A finite element formulation for thermoelastic damping analysis. Int J Numer Methods Eng 78(6):671–691Several. Wikipedia. Wikipedia: The Free Encyclopedia, SeveralSoh AK, Liu JX (2005) On the constitutive equations of magnetoelectroelastic solids. J Intell Mater Syst Struct 16:597–602Stefanescu DM (2011) Handbook of force transducers: principles and components. Springer, BerlinTamma KK, Namburu RR (1992) An effective finite element modeling/analysis approach for dynamic thermoelasticity due to second sound effects. Comput Mech 9:73–84Tang T, Yu W (2009) Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method. Smart Mater Struct 18:1–14Taylor RL (2010) FEAP a finite element analysis program: user manual. University of California, Berkeley. http://www.ce.berkeley.edu/feapThurston RN (1994) Warren p. Mason (1900–1986) physicist, engineer, inventor, author, teacher. IEEE Trans Ultrason Ferroelectr Freq Control 41(4):425–434Tian X, Shen Y, Chen C, He T (2006) A direct finite element method study of generalized thermoelastic problems. Int J Solids Struct 43:2050–2063Tinder RF (2008) Tensor properties of solids: phenomenological development of the tensor properties of crystals. Morgan and Claypool, San RafaelTruesdell C (1968) Thermodynamics for beginners, in irreversible aspects of continuum mechanics. Springer, BerlinTzou HS, Ye R (1996) Pyroelectric and thermal strain effects of piezoelectric (PVDF and PZT) devices. Mech Syst Signal Process 10(4):459–469Walser R (1972) Application of pyromagnetic phenomena to radiation detection

    POR QUE PESQUISAR IMPLEMENTAÇÃO DE POLÍTICAS EDUCACIONAIS ATUALMENTE?

    No full text
    Partindo do pressuposto de que ainda continua valendo a distinção das fases da policy (agenda, formulação, implementação e avaliação), este texto apresenta a evolução da reflexão acadêmica e ressalta a relevância dos estudos sobre implementação ainda hoje, assim como traz alguns resultados de pesquisa como uma contribuição para o debate sobre questões metodológicas na avaliação de processo de implementação, como uma subárea específica da pesquisa de avaliação de política, e para o estudo das políticas educacionais. Serão recuperadas as mudanças e oportunidades do campo da implementação de política educacional como um campo de pesquisa prática, com base na reflexão sobre a literatura produzida e as metodologias empregadas nas pesquisas sobre educação, que se tornou, nos últimos vinte anos, uma arena de acirrados conflitos e interesses com uma política de grandes orçamentos, além de relacionar-se com as múltiplas dimensões do Estado de bem-estar social

    Descentralização do Estado e Pacto Federativo

    No full text
    Ao analisar o processo de reforma educacional, enfatizando a natureza federativa do sistema político brasileiro, o texto detem-se na compreensão da articulação das três esferas governamentais na provisão dos serviços educacionais e apresenta o caso norte-americano a título de comparação para uma melhor compreensão de como se deu a articulação dos diferentes níveis em país federado.A separação entre os sistemas escolares estaduais e municipais é uma questão profundamente institucionalizada que tem levado a uma duplicação de serviços administrativos, à inexistência de um planejamento local e a uma ausência de garantia de serviços educacionais de qualidade para a população. O centro de discussão localiza-se na distribuição dos poderes, responsabilidade e recursos entre os níveis de governo; sendo permanente o embate entre os governos federal, estaduais e municipais por mais recursos

    Is important analyze implementation of educacional policies nowadays?

    No full text
    Assuming that it is still valid to distinguish policy into phases (agenda, formulation, implementation and evaluation), this text presents the evolution of the academic reflection and highlights the relevance of studying implementation today. It also brings forth some research results as a contribution to the debate on methodological issues in the assessment of the implementation process, as a specific subarea of the research on policy assessment for the study of educational policies. Based on a reflection on the literature produced and on the methodology employed in research on education, it retrieves the changes and opportunities in the field of the implementation of educational policy as a field of practical research, which, these last twenty years, has become an arena of fierce conflicts and of interests, because of a large budget policy. It also approaches the multiple dimensions of welfare state.Partindo do pressuposto de que ainda continua valendo a distinção das fases da policy (agenda, formulação, implementação e avaliação), este texto apresenta a evolução da reflexão acadêmica e ressalta a relevância dos estudos sobre implementação ainda hoje, assim como traz alguns resultados de pesquisa como uma contribuição para o debate sobre questões metodológicas na avaliação de processo de implementação, como uma subárea específica da pesquisa de avaliação de política, e para o estudo das políticas educacionais. Serão recuperadas as mudanças e oportunidades do campo da implementação de política educacional como um campo de pesquisa prática, com base na reflexão sobre a literatura produzida e as metodologias empregadas nas pesquisas sobre educação, que se tornou, nos últimos vinte anos, uma arena de acirrados conflitos e interesses com uma política de grandes orçamentos, além de relacionar-se com as múltiplas dimensões do Estado de bem-estar social.1179119

    Políticas sociais de atendimento às crianças e aos adolescentes no Brasil

    No full text
    Nao informado

    Por que pesquisar implementação de políticas educacionais atualmente?

    No full text
    Nao informado

    A politica educacional do Estado de São Paulo : 1967-1990

    No full text
    Orientador : Joaquim Brasil Fontes JuniorTese (doutorado) - Universidade Estadual de Campinas. Faculdade de EducaçãoResumo: Este estudo tem por objetivo avaliar a política educacional do Estado de São Paulo, entre 1967 e 1990. Focalizou-se, inicialmente, a expansão do sistema educacional, aferindo o papel desempenhado pelas dependências administrativas e estabelecendo inter-relações com o contexto socioeconômico. Acompanhou-se a oferta de matrículas dos quatro níveis de ensino regular (pré-escolar, fundamental, médio e superior). Da análise ressalta a ação do governo estadual que foi o ator central nas transformações ocorridas na oferta dos ensinos fundamental e médio. Acompanhou-se, dessa forma, apenas as ações empreendidas pela Secretaria Estadual da Educação nesses vinte e três anos, procurando: compreender as propostas e medidas implementadas no campo educacional, verificando em que se diferenciam e se resultaram na construção de um novo modelo de ação social do Estado; detectar a natureza das inovações implementadas; avaliar o volume dos gastos financeiros; determinar o modelo de gestão e o perfil organizacional; aferir os principais indicadores relativos à eficácia e efetividade das ações governamentais. Com o objetivo de captar a concretização da política educacional, implementada pela Secretaria Estadual da Educação, analisou-se o modo de funcionamento das escolas. Foram abordadas as características do funcionamento dos serviços educacionais, a qualificação dos recursos humanos e as formas de gestão, a partir de uma amostra representativa das escolas da rede estadual. Avaliou-se, finalmente, o desempenho da política educacional como um todo, aferindo quais foram os resultados da política com relação ao nível de escolarização da população e seu grau de eqüidade. Na conclusão, são enfatizados aspectos da ação governamental que possam contribuir para o debate sobre os rumos da escola públicaAbstract: This thesis tries to evaluate the educational policy at the state of São Paulo, between 1967 and 1990. At first, it focus the expansion of the whole educational system, by the identification of the place of each administrative dependency and the analysis of its relations with the socioeconomic context. It follows the supply of places in the four schooling levels (preschool, primary school, secondary school and university). This analysis shows that the state govemment was the central actor in the changes in the primary and secondary schools supplies. So, in a second moment, the choice was to follow just the policies implemented by the Secretaria da Educação of São Paulo during those 23 years, in order a) to understand the projects and measures implemented, identifying their differences and results as a new model of social state action; b) to verify the nature of the innovations implemented; c) to evaluate the expenditure amount; d) to determinate the management model and its organizational profile; e) to examine the principal indicators of the state actions efficiency and efectiveness. In a third moment, the schools mode of operation was analysed. For that, the operation characteristics of the educational services, the human resources qualifications and their management forms were examined. Finally, the performance of the educational policy was evaluated, by the analysis of the policy outcomes in termes of schooling degrees and equity. The conclusion is a contribution for the debate about the perspectives of the public schoolDoutoradoMetodologia de EnsinoDoutor em Educaçã

    Lição de portugues : tradição e modernidade no livro escolar

    No full text
    Orientador : Joaquim Brasil Fontes JrDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de EducaçãoMestrad
    corecore