14 research outputs found

    Proteins of Leishmania (Viannia) shawi confer protection associated with Th1 immune response and memory generation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Leishmania (Viannia) shawi </it>parasite was first characterized in 1989. Recently the protective effects of soluble leishmanial antigen (SLA) from <it>L. (V.) shawi </it>promastigotes were demonstrated using BALB/c mice, the susceptibility model for this parasite. In order to identify protective fractions, SLA was fractionated by reverse phase HPLC and five antigenic fractions were obtained.</p> <p>Methods</p> <p>F1 fraction was purified from L. (V.) shawi parasite extract by reverse phase HPLC. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 μg of F1. After 1 and 16 weeks of last immunization, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 2 months, those same mice were sacrificed and parasite burden, cellular and humoral immune responses were evaluated.</p> <p>Results</p> <p>The F1 fraction induced a high degree of protection associated with an increase in IFN-γ, a decrease in IL-4, increased cell proliferation and activation of CD8<sup>+</sup>T lymphocytes. Long-term protection was acquired in F1-immunized mice, associated with increased CD4<sup>+ </sup>central memory T lymphocytes and activation of both CD4<sup>+ </sup>and CD8<sup>+ </sup>T cells. In addition, F1-immunized groups showed an increase in IgG2a levels.</p> <p>Conclusions</p> <p>The inductor capability of antigens to generate memory lymphocytes that can proliferate and secrete beneficial cytokines upon infection could be an important factor in the development of vaccine candidates against American Tegumentary Leishmaniasis.</p

    Two different modes for copper(II) ion coordination to quinine-type ligands

    No full text
    Three new copper(II) complexes with the ligands quinuclidine [Cu(C7H13N)2(OH2)Cl]Cl.2H 2O (1), quinine [Cu(C20H23O2N2)(OH 2)2]ClO4 (2), and hydroquinidine [Cu(C20H27O2N2)(OH 2) Cl2]Cl.fraction one-halfH2O (3) have been isolated and characterized. The binding sites were assigned on the basis of vibrational spectroscopy, electron paramagnetic resonance, and thermal analysis results. The possibility of the involvement of the quinuclidinic nitrogen in the coordination was evidenced in complex 1, in which copper(II) is coordinated to two quinuclidine molecules. In the case of quinine-type ligands, if the starting material is deprotonated in both nitrogens, copper(II) coordination occurs through the quinuclidinic nitrogen, as in complex 2. In contrast, if the starting material is protonated in the quinuclidinic nitrogen the binding site is the quinolinic nitrogen, as in complex 3. Therefore, both nitrogens of quinine-type ligands constitute binding sites for copper(II) ions

    Cognitive Function with PCSK9 Inhibitors: A 24-Month Follow-Up Observational Prospective Study in the Real World—MEMOGAL Study

    Get PDF
    Introduction The cognitive safety of monoclonal antibody proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) has been established in clinical trials, but not yet in real-world observational studies. We assessed the cognitive function in patients initiating PCSK9i, and differences in cognitive function domains, to analyze subgroups by the low-density lipoprotein cholesterol (LDL-C) achieved, and differences between alirocumab and evolocumab. Methods This has a multicenter, quasi-experimental design carried out in 12 Spanish hospitals from May 2020 to February 2023. Cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Results Among 158 patients followed for a median of 99 weeks, 52% were taking evolocumab and 48% alirocumab; the mean change from baseline in MoCA score at follow-up was + 0.28 [95% CI (− 0.17 to 0.73; p = 0.216)]. There were no significant differences in the secondary endpoints—the visuospatial/executive domain + 0.04 (p = 0.651), naming domain − 0.01 (p = 0.671), attention/memory domain + 0.01 (p = 0.945); language domain − 0.10 (p = 0.145), abstraction domain + 0.03 (p = 0.624), and orientation domain − 0.05 (p = 0.224)—but for delayed recall memory the mean change was statistically significant (improvement) + 0.44 (p = 0.001). Neither were there any differences in the three stratified subgroups according to lowest attained LDL-C level—0–54 mg/dL, 55–69 mg/dL and ≥ 70 mg/dL; p = 0.454—or between alirocumab and evolocumab arms. Conclusion We did not find effect of monoclonal antibody PCSK9i on neurocognitive function over 24 months of treatment, either in global MoCA score or different cognitive domains. An improvement in delayed recall memory was shown. The study showed no differences in the cognitive function between the prespecified subgroups, even among patients who achieved very low levels of LDL-C. There were no differences between alirocumab and evolocumab. Registration ClinicalTtrials.gov Identifier number NCT04319081Open Access funding provided thanks to the CRUE-CSIC agreement with Springer NatureS

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore