2 research outputs found

    Ultrasensitive Rapid Detection of Human Serum Antibody Biomarkers by Biomarker-Capturing Viral Nanofibers

    No full text
    Candida albicans (C. albicans) infection causes high mortality rates within cancer patients. Due to the low sensitivity of the current diagnosis systems, a new sensitive detection method is needed for its diagnosis. Toward this end, here we exploited the capability of genetically displaying two functional peptides, one responsible for recognizing the biomarker for the infection (antisecreted aspartyl proteinase 2 IgG antibody) in the sera of cancer patients and another for binding magnetic nanoparticles (MNPs), on a single filamentous fd phage, a human-safe bacteria-specific virus. The resultant phage is first decorated with MNPs and then captures the biomarker from the sera. The phage-bound biomarker is then magnetically enriched and biochemically detected. This method greatly increases the sensitivity and specificity of the biomarker detection. The average detection time for each serum sample is only about 6 h, much shorter than the clinically used gold standard method, which takes about 1 week. The detection limit of our nanobiotechnological method is approximately 1.1 pg/mL, about 2 orders of magnitude lower than that of the traditional antigen-based method, opening up a new avenue to virus-based disease diagnosis

    Additional file 1 of Monocytes reprogrammed by tumor microparticle vaccine inhibit tumorigenesis and tumor development

    No full text
    Additional file 1: Fig. S1. Intramuscular injection of B16-MPs inhibited tumorigenesis of B16-F10 melanoma. Fig. S2. Intramuscular inoculation of MPs from CT26 colon carcinoma cells rather than those from H22 hepatocarcinoma cells led to prevention of CT26 tumor growth. Fig. S3. T-MPs as a tumor vaccine presented a good safety. Fig. S4. B lymphocytes and T lymphocytes in BALB/c mice don't endocytose T-MPs. Fig. S5. T-MPs are mainly endocytosed by monocytes and macrophages in C57BL/6 mice. Fig. S6. T-MPs treatment doesn't cause the proliferation of moDCs in the dLN. Fig. S7. DNAs and RNAs were isolated from T-MPs
    corecore