91 research outputs found
A Model Framework to Estimate Impact and Cost of Genetics-Based Sterile Insect Methods for Dengue Vector Control
Vector-borne diseases impose enormous health and economic burdens and additional methods to control vector populations are clearly needed. The Sterile Insect Technique (SIT) has been successful against agricultural pests, but is not in large-scale use for suppressing or eliminating mosquito populations. Genetic RIDL technology (Release of Insects carrying a Dominant Lethal) is a proposed modification that involves releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation, and could potentially overcome some technical difficulties with the conventional SIT technology. Using the arboviral disease dengue as an example, we combine vector population dynamics and epidemiological models to explore the effect of a program of RIDL releases on disease transmission. We use these to derive a preliminary estimate of the potential cost-effectiveness of vector control by applying estimates of the costs of SIT. We predict that this genetic control strategy could eliminate dengue rapidly from a human community, and at lower expense (approximately US 86â190 per case of dengue). The theoretical framework has wider potential use; by appropriately adapting or replacing each component of the framework (entomological, epidemiological, vector control bio-economics and health economics), it could be applied to other vector-borne diseases or vector control strategies and extended to include other health interventions
Contraction of the Ventral Abdomen Potentiates Extracardiac Retrograde Hemolymph Propulsion in the Mosquito Hemocoel
BACKGROUND: Hemolymph circulation in mosquitoes is primarily controlled by the contractile action of a dorsal vessel that runs underneath the dorsal midline and is subdivided into a thoracic aorta and an abdominal heart. Wave-like peristaltic contractions of the heart alternate in propelling hemolymph in anterograde and retrograde directions, where it empties into the hemocoel at the terminal ends of the insect. During our analyses of hemolymph propulsion in Anopheles gambiae, we observed periodic ventral abdominal contractions and hypothesized that they promote extracardiac hemolymph circulation in the abdominal hemocoel. METHODOLOGY/PRINCIPAL FINDINGS: We devised methods to simultaneously analyze both heart and abdominal contractions, as well as to measure hemolymph flow in the abdominal hemocoel. Qualitative and quantitative analyses revealed that ventral abdominal contractions occur as series of bursts that propagate in the retrograde direction. Periods of ventral abdominal contraction begin only during periods of anterograde heart contraction and end immediately following a heartbeat directional reversal, suggesting that ventral abdominal contractions function to propel extracardiac hemolymph in the retrograde direction. To test this functional role, fluorescent microspheres were intrathoracically injected and their trajectory tracked throughout the hemocoel. Quantitative measurements of microsphere movement in extracardiac regions of the abdominal cavity showed that during periods of abdominal contractions hemolymph flows in dorsal and retrograde directions at a higher velocity and with greater acceleration than during periods of abdominal rest. Histochemical staining of the abdominal musculature then revealed that ventral abdominal contractions result from the contraction of intrasegmental lateral muscle fibers, intersegmental ventral muscle bands, and the ventral transverse muscles that form the ventral diaphragm. CONCLUSIONS/SIGNIFICANCE: These data show that abdominal contractions potentiate extracardiac retrograde hemolymph propulsion in the abdominal hemocoel during periods of anterograde heart flow
Structure of an Odorant-Binding Protein from the Mosquito Aedes aegypti Suggests a Binding Pocket Covered by a pH-Sensitive âLidâ
Background: The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. Methodology: Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 angstrom resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. Conclusion: The structure of AaegOBP1 (= AaegOBP39) shares the common fold of insect OBPs with six alpha-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this ""lid"" may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.National Science Foundation (NSF) [0918177]National Institutes of Health (NIH) NIAIDBrazilian National Institutes of Science and Technology: Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [573607/2008-7]Brazilian National Institutes of Science and Technology: FAPESP [08/57910-0
Sugar feeding in triatomines: a new perspective for controlling the transmission of Chagas disease
Introduction: Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Currently, there is no vaccine against this disease. Thus, control of the insect vector population is the main strategy available to reduce the number of cases. Triatomines are considered obligate hematophagous, but different alternative feeding behaviors were described, such as haemolymphagy or plant feeding.Methods: To determine the preference for sugar feeding in nymphs and adults of Rhodnius prolixus, the insects were exposed a piece of cotton containing bromophenol blue plus sucrose. In addition, we offered several sugars for different species of triatomines, and tested sugar meals as a route of delivery of insecticides in first-instar nymphs of R. prolixus. The effect of sugar feeding on the physiology of these different species of triatomines was recorded.Results: First instar nymphs ingested sucrose more strongly than other stages, and showed high mortality rates. In different species of triatomines, sucrose induced an ingestion, but engorgement varied according to the species. R. prolixus nymphs showed an indiscriminate intake of various sugars, with very different physiological effects. Furthermore, ingesting different combinations of insecticides + sugar significantly reduced insect survival.Discussion: In summary, we described for the first-time sugar feeding as a widespread behavior in several species of triatomines, and the possibility of the use of toxic sugar baits for the control of these vectors. The knowledge of feeding behavior in these insects can be fundamental for the development of new strategies to control Chagas disease
Sistema e uso de bactérias produtoras de RNA de dupla fita para silenciamento de genes em triatomineos
DepositadaA presente invenção refere-se ao silenciamento de todo e qualquer gene expresso por triatomĂneos. Assim, sĂŁo descritos sistemas e uso de R. rhodnii, Corynebacterium sp, bem como outros simbiontes intestinais de triatomĂneos, transformados para expressĂŁo de dsRNA especĂfico para genes do vetor, sendo administrados via oral para gerar dsRNA in situ no intestino do inseto, promovendo a inibição da expressĂŁo de genes. Este inverno descreve uma estratĂ©gia de controle de infestação de TriatomĂneos visando redução dos cados de Doença de Chagas, sendo que sĂŁo fornecidos novos mĂ©todos de controle da expressĂŁo de genes de triatomĂneos
Coxiella endosymbiont of Rhipicephalus microplus modulates tick physiology with a major impact in blood feeding capacity
In the past decade, metagenomics studies exploring tick microbiota have revealed widespread interactions between bacteria and arthropods, including symbiotic interactions. Functional studies showed that obligate endosymbionts contribute to tick biology, affecting reproductive fitness and molting. Understanding the molecular basis of the interaction between ticks and their mutualist endosymbionts may help to develop control methods based on microbiome manipulation. Previously, we showed that Rhipicephalus microplus larvae with reduced levels of Coxiella endosymbiont of R. microplus (CERM) were arrested at the metanymph life stage (partially engorged nymph) and did not molt into adults. In this study, we performed a transcriptomic differential analysis of the R. microplus metanymph in the presence and absence of its mutualist endosymbiont. The lack of CERM resulted in an altered expression profile of transcripts from several functional categories. Gene products such as DA-P36, protease inhibitors, metalloproteases, and evasins, which are involved in blood feeding capacity, were underexpressed in CERM-free metanymphs. Disregulation in genes related to extracellular matrix remodeling was also observed in the absence of the symbiont. Taken together, the observed alterations in gene expression may explain the blockage of development at the metanymph stage and reveal a novel physiological aspect of the symbiont-tick-vertebrate host interaction
NADPH Oxidase 5 Is a ProâContractile Nox Isoform and a Point of CrossâTalk for Calcium and Redox SignalingâImplications in Vascular Function
Background
NADPH Oxidase 5 (Nox5) is a calciumâsensitive superoxideâgenerating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in proâcontractile signaling and vascular function.
Methods and Results
Transgenic mice expressing human Nox5 in a vascular smooth muscle cellâspecific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5âexpressing mice, agonistâinduced vasoconstriction was exaggerated and endotheliumâdependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by Nâacetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of proâcontractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wildâtype and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor).
Conclusions
Nox5 is a proâcontractile Nox isoform important in redoxâsensitive contraction. This involves calciumâcalmodulin and endoplasmic reticulumâregulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the proâcontractile molecular machinery in vascular smooth muscle cells
Aedes fluviatilis cell lines as new tools to study metabolic and immune interactions in mosquitoâWolbachia symbiosis
In the present work, we established two novel embryonic cell lines from the mosquito Aedes fluviatilis containing or not the naturally occurring symbiont bacteria Wolbachia, which were called wAflu1 and Aflu2, respectively. We also obtained wAflu1 without Wolbachia after tetracycline treatment, named wAflu1.tet. Morphofunctional characterization was performed to help elucidate the symbiont-host interaction in the context of energy metabolism regulation and molecular mechanisms of the immune responses involved. The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells. Additionally, innate immunity mechanisms were activated, showing that the wAflu1 and wAflu1.tet cells are responsive after the stimulus using Gram negative bacteria. Therefore, this work confirms the natural, mutually co-regulating symbiotic relationship between W. pipientis and A. fluviatilis, modulating the host metabolism and immune pathway activation. The results presented here add important resources to the current knowledge of Wolbachia-arthropod interactions
NADPH oxidase 5 is a proâcontractile Nox isoform and a point of crossâtalk for calcium and redox signalingâimplications in vascular function
Background:
NADPH Oxidase 5 (Nox5) is a calciumâsensitive superoxideâgenerating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in proâcontractile signaling and vascular function.
Methods and Results:
Transgenic mice expressing human Nox5 in a vascular smooth muscle cellâspecific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5âexpressing mice, agonistâinduced vasoconstriction was exaggerated and endotheliumâdependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by Nâacetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of proâcontractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wildâtype and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor).
Conclusions:
Nox5 is a proâcontractile Nox isoform important in redoxâsensitive contraction. This involves calciumâcalmodulin and endoplasmic reticulumâregulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the proâcontractile molecular machinery in vascular smooth muscle cells
Enzyme-Linked Immunosorbent Assay-Format Tissue Culture Infectious Dose-50 Test for Titrating Dengue Virus
A dengue nonstructural protein 1 (NS1) antigen capture enzyme-linked immunosorbent assay (ELISA)-based tissue culture infectious dose-50 (TCID50) test (TCID50-ELISA) was developed as an alternative to the standard plaque assay for titrating dengue virus. Virus titers obtained by TCID50-ELISA were comparable to those obtained by the plaque assay and by the traditional TCID50-cytopathic effect (CPE) test (TCID50-CPE), with a better reproducibility and a lower coefficient of variation. Quantitative comparison of TCID50-ELISA and TCID50-CPE resulted in a correlation coefficient of 0.976. Moreover, this new method showed a wider application to C6/36, Vero E6, BHK-21, and Vero cells compared with other titration methods. In summary, the novel TCID50-ELISA method described here provides a more reliable and more accurate alternative compared to the plaque assay and TCID50-CPE for titration of dengue virus
- âŠ