312 research outputs found

    Genotyping-by-sequencing resolves relationships in Polygonaceae tribe Eriogoneae

    Get PDF
    The resolution of cryptic diversity is essential for understanding the evolutionary diversification of lineages and establishing conservation priorities. We examine relationships in Eriogoneae (Polygonaceae), a diverse lineage in western North America. We ask whether Eriogonum umbellatum, a morphologically and ecologically diverse species, is monophyletic and whether its varieties represent evolutionary lineages. We use genotyping-by-sequencing to assemble a SNP dataset for 51 species in the genera Chorizanthe, Eriogonum and Sidotheca. We report a hierarchical phylogenetic analysis using maximum likelihood to estimate the evolutionary history of Eriogoneae. We illustrate admixture components for 21 populations of E. umbellatum, representing four varieties, and test for lineage structure using TreeMix. We identify strongly supported clades within Eriogoneae. Many relationships in the Eucycla + Oregonium and Latifolia clades are supported, while most relationships within the Eriogonum subg. Oligogonum clade and a clade with most Chorizanthe remain unresolved. Eriogonum congdonii resolves within the main E. umbellatum clade, while populations of three varieties of E. umbellatum are closely related to E. ursinum and are associated with serpentine soils. ADmixture and TreeMix analyses suggest E. umbellatum varieties represent evolutionary lineages. These results from SNP data are largely consistent with previous phylogenetic studies of Eriogoneae based on sequence variation. Structure within Oligogonum suggests consistent environmental association and radiation after initial colonization of serpentine. Morphology is unreliable for the infraspecific taxonomy of E. umbellatum. Additional molecular studies are needed to resolve the evolutionary relationships and ecological diversification within this species, in Oligogonum, and in Eriogoneae. © 2021 The Authors. TAXON published by John Wiley & Sons Ltd on behalf of International Association for Plant Taxonomy.We thank SGIker research support services at the University of the Basque Country, Leioa, Spain for DNA extraction and quality control, and acknowledge Centro Nacional de d-An?lisi Gen?mica in Barcelona, Spain for GBS sequencing. We thank J. Andre, N.J. Jensen and J. Steele for contributing samples and D. Marino for collaboration in nucleic acid extractions. We acknowledge the contributions of O. Lao Grueso to the?ADmixture and TreeMix analyses. We thank U.S. Forest Service employees D. Austin, J. Fedorchuk, M. Friend, J. Haas, D. Ikeda, L. Janeway, J. Nelson, D. Netz, A. Sanger, and S. Weis among others for facilitating permitting and collecting. This work was supported by funds from the Basque Government in support of the Terrestrial Plant Diversity group of the Department of Plant Biology and Ecology, University of the Basque Country, and an ERC Advanced Grant, FP7-IDEAS-ERC, ?ADAPT?, project 339941 awarded to T. Brown. We thank SGIker research support services at the University of the Basque Country, Leioa, Spain for DNA extraction and quality control, and acknowledge Centro Nacional de d‐Anàlisi Genòmica in Barcelona, Spain for GBS sequencing. We thank J. Andre, N.J. Jensen and J. Steele for contributing samples and D. Marino for collaboration in nucleic acid extractions. We acknowledge the contributions of O. Lao Grueso to the ADmixture and TreeMix analyses. We thank U.S. Forest Service employees D. Austin, J. Fedorchuk, M. Friend, J. Haas, D. Ikeda, L. Janeway, J. Nelson, D. Netz, A. Sanger, and S. Weis among others for facilitating permitting and collecting. This work was supported by funds from the Basque Government in support of the Terrestrial Plant Diversity group of the Department of Plant Biology and Ecology, University of the Basque Country, and an ERC Advanced Grant, FP7‐IDEAS‐ERC, ‘ADAPT’, project 339941 awarded to T. Brown

    A Smartphone App for Self-Management of Heart Failure in Older African Americans: Feasibility and Usability Study

    Get PDF
    Background: Mobile health (mHealth) apps are dramatically changing how patients and providers manage and monitor chronic health conditions, especially in the area of self-monitoring. African Americans have higher mortality rates from heart failure than other racial groups in the United States. Therefore, self-management of heart failure may improve health outcomes for African American patients. Objective: The aim of the present study was to determine the feasibility of using an mHealth app, and explore the outcomes of quality of life, including self-care maintenance, management, and confidence, among African American patients managing their condition after discharge with a diagnosis of heart failure. Methods: Prior to development of the app, we conducted qualitative interviews with 7 African American patients diagnosed with heart failure, 3 African American patients diagnosed with cardiovascular disease, and 6 health care providers (cardiologists, nurse practitioners, and a geriatrician) who worked with heart failure patients. In addition, we asked 6 hospital chaplains to provide positive spiritual messages for the patients, since spirituality is an important coping method for many African Americans. These formative data were then used for creating a prototype of the app, named Healthy Heart. Specifically, the Healthy Heart app incorporated the following evidence-based features to promote self-management: one-way messages, journaling (ie, weight and symptoms), graphical display of data, and customized feedback (ie, clinical decision support) based on daily or weekly weight. The educational messages about heart failure self-management were derived from the teaching materials provided to the patients diagnosed with heart failure, and included information on diet, sleep, stress, and medication adherence. The information was condensed and simplified to be appropriate for text messages and to meet health literacy standards. Other messages were derived from interviews conducted during the formative stage of app development, including interviews with African American chaplains. Usability testing was conducted over a series of meetings between nurses, social workers, and computer engineers. A pilot one-group pretest-posttest design was employed with participants using the mHealth app for 4 weeks. Descriptive statistics were computed for each of the demographic variables, overall and subscales for Health Related Quality of Life Scale 14 (HQOL14) and subscales for the Self-Care of Heart Failure Index (SCHFI) Version 6 using frequencies for categorical measures and means with standard deviations for continuous measures. Baseline and postintervention comparisons were computed using the Fisher exact test for overall health and paired t tests for HQOL14 and SCHFI questionnaire subscales. Results: A total of 12 African American participants (7 men, 5 women; aged 51-69 years) diagnosed with heart failure were recruited for the study. There was no significant increase in quality of life (P=.15), but clinically relevant changes in self-care maintenance, management, and confidence were observed. Conclusions: An mHealth app to assist with the self-management of heart failure is feasible in patients with low literacy, low health literacy, and limited smartphone experience. Based on the clinically relevant changes observed in this feasibility study of the Healthy Heart app, further research should explore effectiveness in this vulnerable population

    Relationships between Peak Oxygen Uptake and Arterial Function: a Preliminary Study

    Get PDF
    Please view abstract in the attached PDF file

    Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    Get PDF
    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods.Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed.The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles

    Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    Get PDF
    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles

    Release Properties and Electrochemical Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    Get PDF
    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows for the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The total inhibitor content and the release of one of the inhibitors from the microparticles in basic solution was measured. Particles with inhibitor contents of up 60 wt% were synthesized. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, both as the pure materials and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles

    The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon

    Get PDF
    We investigated the influence of seagrass canopies on the benthic biodiversity of bacteria and macroinvertebrates in a Red Sea tropical lagoon. Changes in abundance, number of taxa and assemblage structure were analyzed in response to seagrass densities (low, SLD; high, SHD; seagrasses with algae, SA), and compared with unvegetated sediments. Biological and environmental variables were examined in these four habitats (hereafter called treatments), both in the underlaying sediments and overlaying waters, at three randomly picked locations in March 2017. Differences between treatments were more apparent in the benthic habitat than in the overlaying waters. The presence of vegetation (more than its cover) and changes in sedimentary features (grain size and metals) at local scales influenced the observed biological patterns, particularly for macroinvertebrates. Of note, the highest percentage of exclusive macroinvertebrate taxa (18% of the gamma diversity) was observed in the SHD treatment peaking in the SA for bacteria. Benthic macroinvertebrates and bacteria shared a generally low number of taxa across treatments and locations; approximately, 25% of the gamma diversity was shared among all treatments and locations for macrofauna, dropping to 11% for bacteria. Given the low overlap in the species distribution across the lagoon, sustaining the connectivity among heterogeneous soft sediment habitats appears to be essential for maintaining regional biodiversity. This study addresses a current scientific gap related to the relative contributions of vegetated and unvegetated habitats to biodiversity in tropical regions.Peer reviewe

    UMP/CMPK Is Not the Critical Enzyme in the Metabolism of Pyrimidine Ribonucleotide and Activation of Deoxycytidine Analogs in Human RKO Cells

    Get PDF
    Human UMP/CMP kinase was identified based on its enzymatic activity in vitro. The role of this protein is considered critical for the maintenance of pyrimidine nucleotide pool profile and for the metabolism of pyrimidine analogs in cells, based on the in vitro study of partially purified enzyme and recombinant protein. However, no detailed study has yet addressed the role of this protein in nucleotide metabolism in cells.Two stable cell lines in which UMP/CMP kinase (mRNA: AF087865, EC 2.7.4.14) can be either up-regulated or down-regulated were developed using Tet-On Gene Expression Systems. The amount and enzymatic activity of UMP/CMP kinase extracted from these two cell lines can be induced up by 500% or down by 95-98%. The ribonucleotides of endogenous pyrimidine as well as the metabolism of exogenous natural pyrimidine nucleosides and their analogs were not susceptible to the altered amount of UMP/CMP kinase in these two stable RKO cell lines. The level of incorporation of pyrimidine nucleoside analogs, such as gemcitabine (dFdC) and troxacitabine (L-OddC), into cellular DNA and their potency in inhibiting cell growth were not significantly altered by up-regulation or down-regulation of UMP/CMP kinase expression in cells.The UMP/CMP kinase (EC 2.7.4.14) expressed in RKO cells is not critical for the phosphorylation of (d)CMP and the maintenance of natural nucleotide pools. It also does not play an important role in the activation of dFdC and L-OddC. The increase by 500% or decrease by 95-98% in the levels of UMP/CMP kinase do not affect steady state levels of dFdC and L-OddC in RKO cells. Overall, the activity and possible mechanisms of recombinant UMP/CMP kinase expressed in the in vitro system can not be extended to that of UMP/CMP kinase expressed in a cell system or an in vivo system
    corecore