12,515 research outputs found

    Response time correlations for platinum resistance thermometers in flowing fluids

    Get PDF
    The thermal response of two types of Platinum Resistance Thermometers (PRT's), which are being considered for use in the National Transonic Wind Tunnel Facility, were studied. Response time correlations for each PRT, in flowing water, oil and air, were established separately. A universal correlation, tau WOA = 2.0 + 1264, 9/h, for a Hy-Cal Sensor (with a reference resistance of 100 ohm) within an error of 20% was established while the universal correlation for the Rosemount Sensor (with a reference resistance of 1000 ohm), tau OA = 0.122 + 1105.6/h, was found with a maximum percentage error of 30%. The correlation for the Rosemount Sensor was based on air and oil data only which is certainly not sufficient to make a correlation applicable to every condition. Therefore, the correlation needs more data to be gathered in different fluids. Also, it is necessary to state that the calculation of the parameter, h, was based on the available heat transfer correlations, whose accuracies are already reported in literature uncertain within 20-30%. Therefore, the universal response constant correlations established here for the Hy-Cal and Rosemount sensors are consistent with the uncertainty in the input data and are recommended for future use in flowing liquids and gases

    An Analysis of a Need-Based Student Aid Program for Georgia - Brief

    Get PDF
    This report explores issues associated with establishing a need-based student aid program in Georgia. FRC Brief 17

    An Analysis of a Need-Based Student Aid Program for Georgia

    Get PDF
    This report explores issues associated with establishing a need-based student aid program in Georgia. FRC Report 17

    Reionization constraints on primordial magnetic fields

    Full text link
    We study the impact of the extra density fluctuations induced by primordial magnetic fields on the reionization history in the redshift range: 6<z<106 < z < 10. We perform a comprehensive MCMC physical analysis allowing the variation of parameters related to primordial magnetic fields (strength, B0B_0, and power-spectrum index nBn_{\scriptscriptstyle \rm B}), reionization, and Λ\LambdaCDM cosmological model. We find that magnetic field strengths in the range: B0≃0.05−0.3B_0 \simeq 0.05{-}0.3 nG (for nearly scale-free power spectra) can significantly alter the reionization history in the above redshift range and can relieve the tension between the WMAP and quasar absorption spectra data. Our analysis puts upper-limits on the magnetic field strength B0<0.358,0.120,0.059B_0 < 0.358, 0.120, 0.059 nG (95 % c.l.) for nB=−2.95,−2.9,−2.85n_{\scriptscriptstyle \rm B} = -2.95, -2.9, -2.85, respectively. These represent the strongest magnetic field constraints among those available from other cosmological observables.Comment: Accepted for publication in MNRAS; 9 pages, 6 figure

    Effect of non-magnetic impurities on the magnetic states of anatase TiO2_2

    Full text link
    The electronic and magnetic properties of TiO2_2, TiO1.75_{1.75}, TiO1.75_{1.75}N0.25_{0.25}, and TiO1.75_{1.75}F0.25_{0.25} compounds have been studied by using \emph{ab initio} electronic structure calculations. TiO2_2 is found to evolve from a wide-band-gap semiconductor to a narrow-band-gap semiconductor to a half-metallic state and finally to a metallic state with oxygen vacancy, N-doping and F-doping, respectively. Present work clearly shows the robust magnetic ground state for N- and F-doped TiO2_2. The N-doping gives rise to magnetic moment of ∼\sim0.4 μB\mu_B at N-site and ∼\sim0.1 μB\mu_B each at two neighboring O-sites, whereas F-doping creates a magnetic moment of ∼\sim0.3 μB\mu_B at the nearest Ti atom. Here we also discuss the possible cause of the observed magnetic states in terms of the spatial electronic charge distribution of Ti, N and F atoms responsible for bond formation.Comment: 11 pages, 4 figures To appear J. Phys.: Condens. Matte

    Jacobi Crossover Ensembles of Random Matrices and Statistics of Transmission Eigenvalues

    Full text link
    We study the transition in conductance properties of chaotic mesoscopic cavities as time-reversal symmetry is broken. We consider the Brownian motion model for transmission eigenvalues for both types of transitions, viz., orthogonal-unitary and symplectic-unitary crossovers depending on the presence or absence of spin-rotation symmetry of the electron. In both cases the crossover is governed by a Brownian motion parameter {\tau}, which measures the extent of time-reversal symmetry breaking. It is shown that the results obtained correspond to the Jacobi crossover ensembles of random matrices. We derive the level density and the correlation functions of higher orders for the transmission eigenvalues. We also obtain the exact expressions for the average conductance, average shot-noise power and variance of conductance, as functions of {\tau}, for arbitrary number of modes (channels) in the two leads connected to the cavity. Moreover, we give the asymptotic result for the variance of shot-noise power for both the crossovers, the exact results being too long. In the {\tau} \rightarrow 0 and {\tau} \rightarrow \infty limits the known results for the orthogonal (or symplectic) and unitary ensembles are reproduced. In the weak time-reversal symmetry breaking regime our results are shown to be in agreement with the semiclassical predictions.Comment: 24 pages, 5 figure

    Star formation activity in the Galactic H II region Sh2-297

    Full text link
    We present a multiwavelength study of the Galactic H II region Sh2-297, located in Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm^-3 and 9.15 x 10^5 cm^-6 pc using the radio continuum observations at 610 and 1280 MHz, and VLA archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ~ 7.5' x 7.5' centered on Sh2-297 using grism slitless spectroscopy (to identify the Halpha emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color (CC) and color-magnitude (CM) diagrams, giving 50 red sources (H-K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ~ 0.1 - 2 Msolar and 0.5 - 2 Myr using optical (V/V-I) and NIR (J/J-H) CM diagrams. The mean age of the YSOs is found to be ~ 1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1 - 25 mag) from literature and NIR data for the region, spectral energy distribution (SED) models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star towards the cold dark cloud LDN1657A located west of Sh2-297.Comment: 19 pages, 13 figures, 3 tables. Accepted for publication in The Astrophysical Journa
    • …
    corecore