25 research outputs found

    Evaporative cooling and vasodilation mediate thermoregulation in naked mole-rats during normoxia but not hypoxia

    Get PDF
    Naked mole-rats are among the most hypoxia-tolerant mammals but have a poor thermoregulatory capacity due to their lack of insulating fur and fat, and small body size. In acute hypoxia, naked mole-rat body temperature (Tb) decreases to ambient temperature (Ta) but the mechanisms that underlie this thermoregulatory response are unknown. We hypothesized 1) that naked mole-rat blood vessels vasodilate during hypoxia to shunt heat toward the body surface and/or 2) that they augment heat loss through evaporative cooling. Using open-flow re- spirometry (indirect calorimetry) we explored metabolic and thermoregulatory strategies of naked mole-rats exposed to hypoxia (7% O2 for 1 h) at two relative humidities (RH; 50 or 100% water saturation), and in two Ta's (25 and 30 °C), alone, and following treatment with the vasoconstrictor angiotensin II (ANGII). We found that Tb and metabolic rate decreased in hypoxia across all treatment groups but that neither RH nor ANGII effected either variable in hypoxia. Conversely, both Tb and metabolic rate were reduced in 100% RH or by ANGII treatment in normoxia at 25 °C, and therefore the absolute change in both variables with the onset of hypoxia was reduced when vasodilation or evaporative cooling were prevented. We conclude that naked mole-rats employ evaporative cooling and vasodilation to thermoregulate in normoxia and in 25 °C but that neither mechanism is involved in thermoregulatory changes during acute hypoxia. These findings suggest that NMRs may employ passive strategies such as reducing thermogenesis to reduce Tb in hypoxia, which would support metabolic rate suppression

    The naked truth: a comprehensive clarification and classification of current 'myths' in naked mole-rat biology.

    Get PDF
    The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions

    Painted Turtle Cortex is Resistant to an in Vitro

    No full text
    corecore