48 research outputs found
Evaluation of veliparib (V) and temozolomide (TMZ) in a phase 2 randomized study of the efficacy and tolerability of V+TMZ or carboplatin (C) and paclitaxel (P) vs placebo (Plc)+C/P in patients (pts) with BRCA1 or BRCA2 mutations and metastatic breast cancer
DOI: 10.1158/1538-7445.SABCS16-P4-22-02 Published February 201
Neoadjuvant endocrine therapy in primary breast cancer: indications and use as a research tool
Neoadjuvant endocrine therapy has been increasingly employed in clinical practice to improve surgical options for postmenopausal women with bulky hormone receptor-positive breast cancer. Recent studies indicate that tumour response in this setting may predict long-term outcome of patients on adjuvant endocrine therapy, which argues for its broader application in treating hormone receptor-positive disease. From the research perspective, neoadjuvant endocrine therapy provides a unique opportunity for studies of endocrine responsiveness and the development of novel therapeutic agents
Efficacy and tolerability of veliparib (V; ABT-888) in combination with carboplatin (C) and paclitaxel (P) vs placebo (Plc)+C/P in patients (pts) with BRCA1 or BRCA2 mutations and metastatic breast cancer: A randomized, phase 2 study
Background: Poly(ADP-ribose) polymerase (PARP) inhibitors block DNA damage repair and may thereby enhance the clinical activity of DNA-damaging chemotherapy. Homologous recombination is defective in BRCA1/2-mutated tumors, leading to more error-prone mechanisms of DNA repair and increased sensitivity to PARP inhibition. V is a potent PARP inhibitor that enhances the antitumor activity of platinum agents in preclinical models. This phase 2 trial (NCT01506609) investigated the safety and efficacy of V+C/P or V+ temozolomide (TMZ) vs Plc+C/P in pts with locally recurrent or metastatic breast cancer harboring a BRCA1 or BRCA2 mutation. Results of the V+C/P and Plc+C/P arms are presented; V+TMZ results will be presented separately.
Methods: Pts ≥18 years with histologically confirmed locally recurrent or metastatic breast cancer were
randomized 1:1:1 to: 1) V 40 mg BID D1–7+TMZ, 28-D cycle; 2) V 120 mg BID D1–7+C AUC 6, D3 and P
175 mg/m2, D3, 21-D cycle; or 3) Plc BID D1–7+C/P. Key eligibility criteria included deleterious BRCA1/2 mutation, ≤2 prior chemotherapies for metastatic disease, no prior platinum agent, and no CNS metastases. Randomization was stratified by hormone receptor status..
Altered Expression of Insulin Receptor Isoforms in Breast Cancer
PURPOSE: Insulin-like growth factor (IGF) signaling through human insulin receptor isoform A (IR-A) contributes to tumorigenesis and intrinsic resistance to anti-IGF1R therapy. In the present study, we (a) developed quantitative TaqMan real time-PCR-based assays (qRT-PCR) to measure human insulin receptor isoforms with high specificity, (b) evaluated isoform expression levels in molecularly-defined breast cancer subtypes, and (c) identified the IR-A:IR-B mRNA ratio as a potential biomarker guiding patient stratification for anti-IGF therapies. EXPERIMENTAL DESIGN: mRNA expression levels of IR-A and IR-B were measured in 42 primary breast cancers and 19 matched adjacent normal tissues with TaqMan qRT-PCR assays. The results were further confirmed in 165 breast cancers. The tumor samples were profiled using whole genome microarrays and subsequently subtyped using the PAM50 breast cancer gene signature. The relationship between the IR-A:IR-B ratio and cancer subtype, as well as markers of proliferation were characterized. RESULTS: The mRNA expression levels of IR-A in the breast tumors were similar to those observed in the adjacent normal tissues, while the mRNA levels of IR-B were significantly decreased in tumors. The IR-A:IR-B ratio was significantly higher in luminal B breast cancer than in luminal A. Strong concordance between the IR-A:IR-B ratio and the composite Oncotype DX proliferation score was observed for stratifying the latter two breast cancer subtypes. CONCLUSIONS: The reduction in IR-B expression is the key to the altered IR-A:IR-B ratio observed in breast cancer. The IR-A:IR-B ratio may have biomarker utility in guiding a patient stratification strategy for an anti-IGF therapeutic
The aromatase inhibitor letrozole and inhibitors of insulin-like growth factor I receptor synergistically induce apoptosis in in vitro models of estrogen-dependent breast cancer
INTRODUCTION: Endocrine-dependent, estrogen receptor positive breast cancer cells proliferate in response to estrogens, synthesized by the cytochrome p450 aromatase enzyme. Letrozole is a potent nonsteroidal aromatase inhibitor that is registered for the treatment of postmenopausal women with advanced metastatic breast cancers and in the neoadjuvant, early, and extended adjuvant indications. Because crosstalk exists between estrogen receptor and insulin-like growth factor I receptor (IGF-IR), the effect of combining a selective IGF-IR inhibitor (NVP-AEW541) with letrozole was assessed in two independent in vitro models of estrogen-dependent breast cancer.
METHODS: MCF7 and T47D cells stably expressing aromatase (MCF7/Aro and T47D/Aro) were used as in vitro models of aromatase-driven breast cancer. The role of the IGF-IR pathway in breast cancer cells stimulated only by 17ß-estradiol or androstenedione was assessed by proliferation assays. The combination of letrozole and NVP-AEW541 was assessed for synergy in inhibiting cell proliferation using Chou-Talalay derived equations. Finally, combination or single agent effects on proliferation and apoptosis were assessed using proliferation assays, flow cytometry, and immunoblotting.
RESULTS: Both MCF7 and T47D cells, as well as MCF7/Aro and T47D/Aro, exhibited sensitivity to inhibition of 17ß-estradiol dependent proliferation by NVP-AEW541. Letrozole combined with NVP-AEW541 synergistically inhibited androstenedione-dependent proliferation in aromatase-expressing cells with combination index values of 0.6 or less. Synergistic combination effects correlated with higher levels of apoptosis as compared with cells treated with the single agent alone. Treatment with either agent also appeared to inhibit IGF-IR signalling via phosphoinositide 3-kinase. Notably, IGF-IR inhibition had limited effect on estrogen-dependent proliferation in the cell lines, but was clearly required for survival, suggesting that the combination of letrozole and IGF-IR inhibition sensitizes cells to apoptosis.
CONCLUSION: Inhibition of the IGF-IR pathway and aromatase was synergistic in two independent estrogen-dependent in vitro models of breast cancer. Moreover, synergism of NVP-AEW541 and letrozole correlated with induction of apoptosis, but not cell cycle arrest, in the cell lines tested. Combination of IGF-IR inhibitors and letrozole may hold promise for the treatment of patients with estrogen-dependent breast cancers
Femara® and the future: tailoring treatment and combination therapies with Femara
Long-term estrogen deprivation treatment for breast cancer can, in some patients, lead to the activation of alternate cellular pathways, resulting in the re-emergence of the disease. This is a distressing scenario for oncologists and patients, but recent intensive molecular and biochemical studies are beginning to unravel these pathways, revealing opportunities for new targeted treatments. Far from making present therapies redundant, these new discoveries open the door to novel combination therapies that promise to provide enhanced efficacy or overcome treatment resistance. Letrozole, one of the most potent aromatase inhibitors, is the ideal candidate for combination therapy; indeed, it is one of the most intensively studied aromatase inhibitors in the evolving combinatorial setting. Complementary to the use of combination therapy is the development of molecular tools to identify patients who will benefit the most from these new treatments. Microarray gene profiling studies, designed to detect letrozole-responsive targets, are currently under way to understand how the use of the drug can be tailored more efficiently to specific patient needs
Clinical trials update: endocrine and biological therapy combinations in the treatment of breast cancer
A greater understanding of the biological mechanisms responsible for de novo and acquired endocrine resistance has led to the rational design of clinical trials exploring the benefit of combining hormonal therapies with novel biological agents in an effort to enhance the efficacy of ER+ breast cancer treatment. These studies are increasingly including parallel biological analyses to elucidate the molecular characteristics of those tumors that are most likely to respond to specific targeted/endocrine combinations in an effort to develop a tailored approach to the management of individual patients. Unfortunately despite encouraging preclinical data, some of these combinations have yielded disappointing results in the clinical setting. This article will review the results of clinical trials of endocrine/biological combinations conducted in early and advanced breast cancer as well as provide an update on ongoing studies
The patient experience
The impact of improved treatments for the management of hormone-sensitive breast cancer extends beyond clinical responses. Thanks to appropriate literature and access to the internet, patient awareness of treatment options has grown and patients are now, in many cases, able to engage their oncologists in informed conversations regarding treatment and what to expect in terms of efficacy and safety. Indeed, patients realize that although there is no cure for metastatic disease, treatment can greatly reduce the risk of progression and in the adjuvant setting, where treatment is administered with a curative intent, current treatment options reduce the risk of relapse. The approval of letrozole throughout the breast cancer continuum has provided patients with many reassuring options. The improvement in outcome with letrozole is achieved without a detrimental effect on overall quality of life. Adverse events such as hot flushes, arthralgia, vaginal dryness, and potential osteoporosis are most significant from the patient’s perspective, and it is important that caregivers pay attention to patients experiencing these events, as they can impact compliance unless effectively explained and managed. The major benefits of letrozole are to improve prospects for long-term survivorship in the adjuvant setting and to delay progression and the need for chemotherapy in the metastatic setting
