1,445 research outputs found

    Interleukin-1β Mediates Metalloproteinase-Dependent Renal Cell Carcinoma Tumor Cell Invasion through the Activation of CCAAT Enhancer Binding Protein β

    Get PDF
    Effective treatment of metastatic renal cell carcinoma (RCC) remains a major medical concern, as these tumors are refractory to standard therapies and prognosis is poor. Although molecularly targeted therapies have shown some promise in the treatment of this disease, advanced RCC tumors often develop resistance to these drugs. Dissecting the molecular mechanisms underlying the progression to advanced disease is necessary to design alternative and improved treatment strategies. Tumor-associated macrophages (TAMs) found in aggressive RCC tumors produce a variety of inflammatory cytokines, including interleukin-1 b (IL-1b). Moreover, the presence of TAMs and high serum levels of IL-1b in RCC patients correlate with advanced disease. We hypothesized that IL-1b in the tumor microenvironment promotes the development of aggressive RCC tumors by directing affecting tumor epithelial cells. To address this, we investigated the role of IL-1b in mediating RCC tumor cell invasion as a measure of tumor progression. We report that IL-1b induced tumor cell invasion of RCC cells through a process that was dependent on the activity of matrix metalloproteinases (MMPs) and was independent of migration rate. Specifically, IL-1b induced the expression of MMP-1, MMP-3, MMP-10, and MT1-MMP in a mechanism dependent on IL-1b activation of the transcription factor CCAAT enhancer binding protein b (CEBP b). Consistent with its role in MMP gene expression, CEBP b knockdown significantly reduced invasion, but not migration, of RCC tumor cells. These results identify the IL-1b /CEBP b/MMP pathway as a putative target in the design of anti-metastatic therapies for the treatment of advanced RCC

    Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors

    Get PDF
    Matrix metalloproteinase (MMP)-1, MMP-8 and MMP-13 are interstitial collagenases that degrade type II collagen in cartilage; this is a committed step in the progression of rheumatoid arthritis and osteoarthritis. Of these enzymes, the expression of MMP-1 and MMP-13 is substantially increased in response to IL-1 and tumor necrosis factor-α, and elevated levels of these collagenases are observed in arthritic tissues. Therefore, cytokine-mediated MMP-1 and MMP-13 gene regulation is an important issue in arthritis research. In this review, we discuss current models of MMP-1 and MMP-13 transcriptional regulation, with a focus on signaling intermediates and transcription factors that may be future targets for the development of new arthritis drugs

    Principal component analysis for predicting transcription-factor binding motifs from array-derived data

    Get PDF
    BACKGROUND: The responses to interleukin 1 (IL-1) in human chondrocytes constitute a complex regulatory mechanism, where multiple transcription factors interact combinatorially to transcription-factor binding motifs (TFBMs). In order to select a critical set of TFBMs from genomic DNA information and an array-derived data, an efficient algorithm to solve a combinatorial optimization problem is required. Although computational approaches based on evolutionary algorithms are commonly employed, an analytical algorithm would be useful to predict TFBMs at nearly no computational cost and evaluate varying modelling conditions. Singular value decomposition (SVD) is a powerful method to derive primary components of a given matrix. Applying SVD to a promoter matrix defined from regulatory DNA sequences, we derived a novel method to predict the critical set of TFBMs. RESULTS: The promoter matrix was defined to establish a quantitative relationship between the IL-1-driven mRNA alteration and genomic DNA sequences of the IL-1 responsive genes. The matrix was decomposed with SVD, and the effects of 8 potential TFBMs (5'-CAGGC-3', 5'-CGCCC-3', 5'-CCGCC-3', 5'-ATGGG-3', 5'-GGGAA-3', 5'-CGTCC-3', 5'-AAAGG-3', and 5'-ACCCA-3') were predicted from a pool of 512 random DNA sequences. The prediction included matches to the core binding motifs of biologically known TFBMs such as AP2, SP1, EGR1, KROX, GC-BOX, ABI4, ETF, E2F, SRF, STAT, IK-1, PPARγ, STAF, ROAZ, and NFκB, and their significance was evaluated numerically using Monte Carlo simulation and genetic algorithm. CONCLUSION: The described SVD-based prediction is an analytical method to provide a set of potential TFBMs involved in transcriptional regulation. The results would be useful to evaluate analytically a contribution of individual DNA sequences

    Regulation of Collagenase Gene Expression by IL-1 Beta Requires Transcriptional and Post-Transcriptional Mechanisms

    Get PDF
    Interleukin-1 beta is believed to contribute to the pathophysiology of rheumatoid arthritis by activating collagenase gene expression. We have used a cell culture model of rabbit synovial fibroblasts to examine the molecular mechanisms of IL-1 beta-mediated collagenase gene expression. Stimulation of rabbit synovial fibroblasts with 10 ng/ml recombinant human IL-1 beta resulted in a 20-fold increase in collagenase mRNA by 12 h. Transient transfection studies using collagenase promoter-CAT constructs demonstrated that proximal sequences responded poorly to IL-1 beta, possibly due to insufficient activation of AP-1 by this cytokine. More distal sequences were required for IL-1 beta responsiveness, with a 4700 bp construct showing approximately 5-fold induction above control. To examine post-transcriptional mechanisms, transcript from a human collagenase cDNA was constitutively produced by the simian virus 40 early promoter. IL-1 beta stabilized the constitutively expressed human transcript. Furthermore, mutation of the ATTTA motifs in the 3\u27 untranslated region of the human gene also stabilized the transcript. Finally, the rabbit collagenase 3\u27 untranslated region destabilized a constitutively transcribed chloramphenicol acetyltransferase transcript. These data indicate that in addition to activating transcription, IL-1 beta increases collagenase transcript stability by reversing the destabilizing effects of sequences in the 3\u27 untranslated region
    corecore