160 research outputs found

    Estimation of inbreeding depression on female fertility in the Finnish Ayrshire population

    Get PDF
    Single nucleotide polymorphism (SNP) data enable the estimation of inbreeding at the genome level. In this study, we estimated inbreeding levels for 19,075 Finnish Ayrshire cows genotyped with a low-density SNP panel (8K). The genotypes were imputed to 50K density, and after quality control, 39,144 SNPs remained for the analysis. Inbreeding coefficients were estimated for each animal based on the percentage of homozygous SNPs (F-PH), runs of homozygosity (F-ROH) and pedigree (F-PED). Phenotypic records were available for 13,712 animals including non-return rate (NRR), number of inseminations (AIS) and interval from first to last insemination (IFL) for heifers and up to three parities for cows, as well as interval from calving to first insemination (ICF) for cows. Average F-PED was 0.02, F-ROH 0.06 and F-PH 0.63. A correlation of 0.71 was found between F-PED and F-ROH, 0.66 between F-PED and F-PH and 0.94 between F-ROH and F-PH. Pedigree-based inbreeding coefficients did not show inbreeding depression in any of the traits. However, when F-ROH or F-PH was used as a covariate, significant inbreeding depression was observed; a 10% increase in F-ROH was associated with 5days longer IFL0 and IFL1, 2weeks longer IFL3 and 3days longer ICF2 compared to non-inbred cows.Peer reviewe

    Single-step genomic evaluation of Russian dairy cattle using internal and external information

    Get PDF
    Genomic data are widely used in predicting the breeding values of dairy cattle. The accuracy of genomic prediction depends on the size of the reference population and how related the candidate animals are to it. For populations with limited numbers of progeny-tested bulls, the reference populations must include cows and data from external populations. The aim of this study was to implement state-of-the-art single-step genomic evaluations for milk and fat yield in Holstein and Russian Black & White cattle in the Leningrad region (LR, Russia), using only a limited number of genotyped animals. We complemented internal information with external pseudo-phenotypic and genotypic data of bulls from the neighbouring Danish, Finnish and Swedish Holstein (DFS) population. Three data scenarios were used to perform single-step GBLUP predictions in the LR dairy cattle population. The first scenario was based on the original LR reference population, which constituted 1,080 genotyped cows and 427 genotyped bulls. In the second scenario, the genotypes of 414 bulls related to the LR from the DFS population were added to the reference population. In the third scenario, LR data were further augmented with pseudo-phenotypic data from the DFS population. The inclusion of foreign information increased the validation reliability of the milk yield by up to 30%. Suboptimal data recording practices hindered the improvement of fat yield. We confirmed that the single-step model is suitable for populations with a low number of genotyped animals, especially when external information is integrated into the evaluations. Genomic prediction in populations with a low number of progeny-tested bulls can be based on data from genotyped cows and on the inclusion of genotypes and pseudo-phenotypes from the external population. This approach increased the validation reliability of the implemented single-step model in the milk yield, but shortcomings in the LR data recording scheme prevented improvements in fat yield.Peer reviewe

    Whole-genome SNP association analysis of reproduction traits in the Finnish Landrace pig breed

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Good genetic progress for pig reproduction traits has been achieved using a quantitative genetics-based multi-trait BLUP evaluation system. At present, whole-genome single nucleotide polymorphisms (SNP) panels provide a new tool for pig selection. The purpose of this study was to identify SNP associated with reproduction traits in the Finnish Landrace pig breed using the Illumina PorcineSNP60 BeadChip.</p> <p>Methods</p> <p>Association of each SNP with different traits was tested with a weighted linear model, using SNP genotype as a covariate and animal as a random variable. Deregressed estimated breeding values of the progeny tested boars were used as the dependent variable and weights were based on their reliabilities. Statistical significance of the associations was based on Bonferroni-corrected <it>P</it>-values.</p> <p>Results</p> <p>Deregressed estimated breeding values were available for 328 genotyped boars. Of the 62 163 SNP in the chip, 57 868 SNP had a call rate > 0.9 and 7 632 SNP were monomorphic. Statistically significant results (<it>P</it>-value < 2.0E-06) were obtained for total number of piglets born in first and later parities and piglet mortality between birth and weaning in later parity, and suggestive associations (<it>P</it>-value < 4.0E-06) for piglet mortality between birth and weaning in first parity, number of stillborn piglets in later parity, first farrowing interval and second farrowing interval. Two of the statistically significant regions for total number of piglets born in first and later parities are located on chromosome 9 around 95 and 79 Mb. The estimated SNP effect in these regions was approximately one piglet between the two homozygote classes. By combining the two most significant SNP in these regions, favourable double homozygote animals are expected to have 1.3 piglets (<it>P</it>-value = 1.69E-08) more than unfavourable double homozygote animals. A region on chromosome 9 (66 Mb) was statistically significant for piglet mortality between birth and weaning in later parity (0.44 piglets between homozygotes, <it>P</it>-value = 6.94E-08).</p> <p>Conclusions</p> <p>Three separate regions on chromosome 9 gave significant results for litter size and pig mortality. The frequencies of favourable alleles of the significant SNP are moderate in the Finnish Landrace population and these SNP are thus valuable candidates for possible marker-assisted selection.</p

    Use of linear mixed models for genetic evaluation of gestation length and birth weight allowing for heavy-tailed residual effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The distribution of residual effects in linear mixed models in animal breeding applications is typically assumed normal, which makes inferences vulnerable to outlier observations. In order to mute the impact of outliers, one option is to fit models with residuals having a heavy-tailed distribution. Here, a Student's-<it>t </it>model was considered for the distribution of the residuals with the degrees of freedom treated as unknown. Bayesian inference was used to investigate a bivariate Student's-<it>t </it>(BS<it>t</it>) model using Markov chain Monte Carlo methods in a simulation study and analysing field data for gestation length and birth weight permitted to study the practical implications of fitting heavy-tailed distributions for residuals in linear mixed models.</p> <p>Methods</p> <p>In the simulation study, bivariate residuals were generated using Student's-<it>t </it>distribution with 4 or 12 degrees of freedom, or a normal distribution. Sire models with bivariate Student's-<it>t </it>or normal residuals were fitted to each simulated dataset using a hierarchical Bayesian approach. For the field data, consisting of gestation length and birth weight records on 7,883 Italian Piemontese cattle, a sire-maternal grandsire model including fixed effects of sex-age of dam and uncorrelated random herd-year-season effects were fitted using a hierarchical Bayesian approach. Residuals were defined to follow bivariate normal or Student's-<it>t </it>distributions with unknown degrees of freedom.</p> <p>Results</p> <p>Posterior mean estimates of degrees of freedom parameters seemed to be accurate and unbiased in the simulation study. Estimates of sire and herd variances were similar, if not identical, across fitted models. In the field data, there was strong support based on predictive log-likelihood values for the Student's-<it>t </it>error model. Most of the posterior density for degrees of freedom was below 4. Posterior means of direct and maternal heritabilities for birth weight were smaller in the Student's-<it>t </it>model than those in the normal model. Re-rankings of sires were observed between heavy-tailed and normal models.</p> <p>Conclusions</p> <p>Reliable estimates of degrees of freedom were obtained in all simulated heavy-tailed and normal datasets. The predictive log-likelihood was able to distinguish the correct model among the models fitted to heavy-tailed datasets. There was no disadvantage of fitting a heavy-tailed model when the true model was normal. Predictive log-likelihood values indicated that heavy-tailed models with low degrees of freedom values fitted gestation length and birth weight data better than a model with normally distributed residuals.</p> <p>Heavy-tailed and normal models resulted in different estimates of direct and maternal heritabilities, and different sire rankings. Heavy-tailed models may be more appropriate for reliable estimation of genetic parameters from field data.</p

    Dimensionality of genomic information and performance of the Algorithm for Proven and Young for different livestock species

    Get PDF
    International audienceAbstractBackgroundA genomic relationship matrix (GRM) can be inverted efficiently with the Algorithm for Proven and Young (APY) through recursion on a small number of core animals. The number of core animals is theoretically linked to effective population size (Ne). In a simulation study, the optimal number of core animals was equal to the number of largest eigenvalues of GRM that explained 98% of its variation. The purpose of this study was to find the optimal number of core animals and estimate Ne for different species.MethodsDatasets included phenotypes, pedigrees, and genotypes for populations of Holstein, Jersey, and Angus cattle, pigs, and broiler chickens. The number of genotyped animals varied from 15,000 for broiler chickens to 77,000 for Holsteins, and the number of single-nucleotide polymorphisms used for genomic prediction varied from 37,000 to 61,000. Eigenvalue decomposition of the GRM for each population determined numbers of largest eigenvalues corresponding to 90, 95, 98, and 99% of variation.ResultsThe number of eigenvalues corresponding to 90% (98%) of variation was 4527 (14,026) for Holstein, 3325 (11,500) for Jersey, 3654 (10,605) for Angus, 1239 (4103) for pig, and 1655 (4171) for broiler chicken. Each trait in each species was analyzed using the APY inverse of the GRM with randomly selected core animals, and their number was equal to the number of largest eigenvalues. Realized accuracies peaked with the number of core animals corresponding to 98% of variation for Holstein and Jersey and closer to 99% for other breed/species. Ne was estimated based on comparisons of eigenvalue decomposition in a simulation study. Assuming a genome length of 30 Morgan, Ne was equal to 149 for Holsteins, 101 for Jerseys, 113 for Angus, 32 for pigs, and 44 for broilers.ConclusionsEigenvalue profiles of GRM for common species are similar to those in simulation studies although they are affected by number of genotyped animals and genotyping quality. For all investigated species, the APY required less than 15,000 core animals. Realized accuracies were equal or greater with the APY inverse than with regular inversion. Eigenvalue analysis of GRM can provide a realistic estimate of Ne
    corecore