63 research outputs found

    レーザー ユウキ ショウゲキハ ニヨル ジョウタイ ホウテイシキ ケイソク

    Full text link
    小特集レーザー誘起衝撃波圧縮を用いた状態方程式研

    Multi-layered flyer accelerated by laser induced shock waves

    Full text link
    Copyright 2000 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 7(2), 676-680, 2000 and may be found at http://dx.doi.org/10.1063/1.87385

    Development of an experimental platform for combinative use of an XFEL and a high-power nanosecond laser

    Get PDF
    We developed an experimental platform for combinative use of an X-ray free electron laser (XFEL) and a high-power nanosecond laser. The main target of the platform is an investigation of matter under high-pressure states produced by a laser-shock compression. In this paper, we show details of the experimental platform, including XFEL parameters and the focusing optics, the laser irradiation system and X-ray diagnostics. As a demonstration of the high-power laser-pump XFEL-probe experiment, we performed an X-ray diffraction measurement. An in-situ single-shot X-ray diffraction pattern expands to a large angle side, which shows a corundum was compressed by laser irradiation.Inubushi, Y.; Yabuuchi, T.; Togashi, T.; Sueda, K.; Miyanishi, K.; Tange, Y.; Ozaki, N.; Matsuoka, T.; Kodama, R.; Osaka, T.; Matsuyama, S.; Yamauchi, K.; Yumoto, H.; Koyama, T.; Ohashi, H.; Tono, K.; Yabashi, M. Development of an Experimental Platform for Combinative Use of an XFEL and a High-Power Nanosecond Laser. Appl. Sci. 2020, 10, 2224. https://doi.org/10.3390/app10072224

    Transonic Dislocation Propagation in Diamond

    Full text link
    The motion of line defects (dislocations) has been studied for over 60 years but the maximum speed at which they can move is unresolved. Recent models and atomistic simulations predict the existence of a limiting velocity of dislocation motions between the transonic and subsonic ranges at which the self-energy of dislocation diverges, though they do not deny the possibility of the transonic dislocations. We use femtosecond x-ray radiography to track ultrafast dislocation motion in shock-compressed single-crystal diamond. By visualizing stacking faults extending faster than the slowest sound wave speed of diamond, we show the evidence of partial dislocations at their leading edge moving transonically. Understanding the upper limit of dislocation mobility in crystals is essential to accurately model, predict, and control the mechanical properties of materials under extreme conditions

    Synthesis of submicron metastable phase of silicon using femtosecond laser-driven shock wave

    Full text link
    We measured the grain size of metastable phase of Si synthesized by shock compression. We analyzed the crystalline structures of the femtosecond laser-driven shock compressed silicon with x-ray diffraction measurements. We found that submicron grains of metastable Si-VIII exist in the silicon. We suggest that the pressure loading time is too short for the nucleated high-pressure phases to grow in case of the femtosecond laser-driven shock compression, therefore Si-VIII grains of submicron size are obtained. We are expecting to discover other unique crystalline structures induced by the femtosecond laser-driven shock wave. © 2011 American Institute of Physics.Tsujino M., Sano T., Sakata O., et al, Journal of Applied Physics, 110, 12, 126103 (2011) https://doi.org/10.1063/1.3673591

    Simultaneous Bright- and Dark-Field X-ray Microscopy at X-ray Free Electron Lasers

    Full text link
    The structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior. Synchrotron X-ray diffraction based imaging has long mapped the deeply embedded structural elements, and with enhanced resolution, Dark Field X-ray Microscopy (DFXM) can now map those features with the requisite nm-resolution. However, these techniques still suffer from the required integration times due to limitations from the source and optics. This work extends DFXM to X-ray free electron lasers, showing how the 101210^{12} photons per pulse available at these sources offer structural characterization down to 100 fs resolution (orders of magnitude faster than current synchrotron images). We introduce the XFEL DFXM setup with simultaneous bright field microscopy to probe density changes within the same volume. This work presents a comprehensive guide to the multi-modal ultrafast high-resolution X-ray microscope that we constructed and tested at two XFELs, and shows initial data demonstrating two timing strategies to study associated reversible or irreversible lattice dynamics

    A nationwide, multi-center, retrospective study of symptomatic small bowel stricture in patients with Crohn\u27s disease.

    Get PDF
    BACKGROUND:Small bowel stricture is one of the most common complications in patients with Crohn\u27s disease (CD). Endoscopic balloon dilatation (EBD) is a minimally invasive treatment intended to avoid surgery; however, whether EBD prevents subsequent surgery remains unclear. We aimed to reveal the factors contributing to surgery in patients with small bowel stricture and the factors associated with subsequent surgery after initial EBD.METHODS:Data were retrospectively collected from surgically untreated CD patients who developed symptomatic small bowel stricture after 2008 when the use of balloon-assisted enteroscopy and maintenance therapy with anti-tumor necrosis factor (TNF) became available.RESULTS:A total of 305 cases from 32 tertiary referral centers were enrolled. Cumulative surgery-free survival was 74.0% at 1 year, 54.4% at 5 years, and 44.3% at 10 years. The factors associated with avoiding surgery were non-stricturing, non-penetrating disease at onset, mild severity of symptoms, successful EBD, stricture length < 2 cm, and immunomodulator or anti-TNF added after onset of obstructive symptoms. In 95 cases with successful initial EBD, longer EBD interval was associated with lower risk of surgery. Receiver operating characteristic analysis revealed that an EBD interval of ≤ 446 days predicted subsequent surgery, and the proportion of smokers was significantly high in patients who required frequent dilatation.CONCLUSIONS:In CD patients with symptomatic small bowel stricture, addition of immunomodulator or anti-TNF and smoking cessation may improve the outcome of symptomatic small bowel stricture, by avoiding frequent EBD and subsequent surgery after initial EBD
    corecore