8,963 research outputs found

    Cooling a nanomechanical resonator by a triple quantum dot

    Full text link
    We propose an approach for achieving ground-state cooling of a nanomechanical resonator (NAMR) capacitively coupled to a triple quantum dot (TQD). This TQD is an electronic analog of a three-level atom in Λ\Lambda configuration which allows an electron to enter it via lower-energy states and to exit only from a higher-energy state. By tuning the degeneracy of the two lower-energy states in the TQD, an electron can be trapped in a dark state caused by destructive quantum interference between the two tunneling pathways to the higher-energy state. Therefore, ground-state cooling of an NAMR can be achieved when electrons absorb readily and repeatedly energy quanta from the NAMR for excitations.Comment: 6 pages, 3 figure

    Resonance tongues and patterns in periodically forced reaction-diffusion systems

    Full text link
    Various resonant and near-resonant patterns form in a light-sensitive Belousov-Zhabotinsky (BZ) reaction in response to a spatially-homogeneous time-periodic perturbation with light. The regions (tongues) in the forcing frequency and forcing amplitude parameter plane where resonant patterns form are identified through analysis of the temporal response of the patterns. Resonant and near-resonant responses are distinguished. The unforced BZ reaction shows both spatially-uniform oscillations and rotating spiral waves, while the forced system shows patterns such as standing-wave labyrinths and rotating spiral waves. The patterns depend on the amplitude and frequency of the perturbation, and also on whether the system responds to the forcing near the uniform oscillation frequency or the spiral wave frequency. Numerical simulations of a forced FitzHugh-Nagumo reaction-diffusion model show both resonant and near-resonant patterns similar to the BZ chemical system

    Water use patterns of forage cultivars in the North China Plain

    Full text link
    Water shortage is the primary limiting factor for crop production and long-term agricultural sustainability of the North China Plain. Forage cultivation emerged recently in this region. A fiveryear field experiment studies were conducted at Yucheng Integrated Experiment Station to quantify the water requirement and water use efficiency of seven forage varieties under climate variability, that is five annuals, i.e., ryegrass (Secale cereale L.), triticale (×Triticosecale Wittmack), sorghum hybrid sudangrass (Sorghum biolor × Sorghum Sudanense c.v.), ensilage corn (Zea mays L.), prince's feather (Amaranthus paniculatus L.) and two perennials alfalfa (Medicago sativa L.) and cup plant (Silphium perfoliatum L.). Average ET for five annual varieties ranged from 333 to 371 mm, significantly lower than that of the perennial varieties. ET of alfalfa is 789 mm, which is higher than that of cup plant. Ryegrass and triticale need 1.5 to 2.0 mm water per day, while others 2.9-4.4 mm. Ensilage corn and Sorghum hybrid sudangrass performed better as their irrigation demand is smaller in the dry seasons than others. Ryegrass needs 281 mm irrigation requirement, which is higher than triticale in dry years. Prince's feather is sensitive to climate change and it can be selected when rainfall is greater than 592.9 mm in the growing season. Mean WUE for prince's feather is 20 Kg ha -1 mm -1, for ensilage corn is 41 Kg ha -1 mm -1 and others is close to 26 Kg ha -1 mm -1. Our experiments indicate that excessive rain will reduce the production of alfalfae. The results of this experiment have implications for researchers and policy makers with water management strategy of forage cultivars and it also very useful in addressing climate change impact and adaptation issues

    Backaction of a charge detector on a double quantum dot

    Get PDF
    We develop a master equation approach to study the backaction of quantum point contact (QPC) on a double quantum dot (DQD) at zero bias voltage. We reveal why electrons can pass through the zero-bias DQD only when the bias voltage across the QPC exceeds a threshold value determined by the eigenstate energy difference of the DQD. This derived excitation condition agrees well with experiments on QPC-induced inelastic electron tunneling through a DQD [S. Gustavsson et al., Phys. Rev. Lett. 99, 206804(2007)]. Moreover, we propose a new scheme to generate a pure spin current by the QPC in the absence of a charge current.Comment: 6 pages, 4 figure

    Defect turbulence in inclined layer convection

    Full text link
    We report experimental results on the defect turbulent state of undulation chaos in inclined layer convection of a fluid withPrandtl number 1\approx 1. By measuring defect density and undulation wavenumber, we find that the onset of undulation chaos coincides with the theoretically predicted onset for stable, stationary undulations. At stronger driving, we observe a competition between ordered undulations and undulation chaos, suggesting bistability between a fixed-point attractor and spatiotemporal chaos. In the defect turbulent regime, we measured the defect creation, annihilation, entering, leaving, and rates. We show that entering and leaving rates through boundaries must be considered in order to describe the observed statistics. We derive a universal probability distribution function which agrees with the experimental findings.Comment: 4 pages, 5 figure

    Turing Instability in a Boundary-fed System

    Get PDF
    The formation of localized structures in the chlorine dioxide-idodine-malonic acid (CDIMA) reaction-diffusion system is investigated numerically using a realistic model of this system. We analyze the one-dimensional patterns formed along the gradients imposed by boundary feeds, and study their linear stability to symmetry-breaking perturbations (Turing instability) in the plane transverse to these gradients. We establish that an often-invoked simple local linear analysis which neglects longitudinal diffusion is inappropriate for predicting the linear stability of these patterns. Using a fully nonuniform analysis, we investigate the structure of the patterns formed along the gradients and their stability to transverse Turing pattern formation as a function of the values of two control parameters: the malonic acid feed concentration and the size of the reactor in the dimension along the gradients. The results from this investigation are compared with existing experiments.Comment: 41 pages, 18 figures, to be published in Physical Review

    Treatment effect of Bushen Huayu extract on postmenopausal osteoporosis in vivo

    Get PDF
    Bushen Huayu extract (BSHY), a traditional Chinese medicine, has been demonstrated to treat postmenopausal osteoporosis, however, the underlying mechanism remains to be fully elucidated. The aim of the present study was to investigate the therapeutic effect of BSHY and the mechanisms underlying this effect in an in vivo postmenopausal osteoporosis animal model. A total of 1 g BSHY containing 7.12 μg icariin was prepared. Low-dose BSHY (BSHY-L; 11.1 g/kg), medium-dose BSHY (BSHY-M; 22.2 g/kg) and high-dose BSHY (BSHY-H; 44.4 g/kg) was administered to oophorectomized rats using intragastric infusion. Estradiol (E2), interleukin-6 (IL-6) and serum alkaline phosphatase (ALP) levels, as well as bone density, were determined. It was found that the levels of serum ALP in the BSHY-L, BSHY-M and BSHY-H groups (197.75±41.74, 166.63±44.83 and 165.63±44.90 IU/l, respectively) were significantly decreased compared with the model group (299.13±45.79 IU/l; P<0.05), whilst the levels of E2 (16.89±1.71, 17.95±1.40 and 18.34±1.43 pg/ml, respectively) increased compared with the model group (14.54±1.61; P<0.05). In addition, the levels of IL-6 decreased in the BSHY-L, BSHY-M and BSHY-H groups (91.85±14.81, 82.99±15.65 and 80.54±14.61 pg/ml, respectively) compared with the model group (105.93±16.50 pg/ml; P<0.05). Furthermore, it was demonstrated that BSHY increased the bone density in the BSHY-L, BSHY-M and BSHY-H groups (0.20±0.014, 0.22±0.016 and 0.22±0.017 g/cm2, respectively) compared with the model group (0.19±0.011 g/cm2; P<0.05). BSHY was also found to increase the number of osteoblasts in the BSHY-L, BSHY-M and BSHY-H groups (25.38±2.17, 29.25±2.12 and 30.00±2.39, respectively), compared with in the model group (14.75±2.38; P<0.05), and decrease the number of osteoclasts in the BSHY-L, BSHY-M and BSHY-H groups (4.00±1.85, 4.25±1.39 and 5.75±1.49, respectively) compared with 9.50±1.60 observed in the model group (P<0.05). These results suggest that BSHY is a potential therapeutic drug for the treatment of osteoporosis in vivo. Furthermore, these results suggest that the mechanism by which BSHY decreases the serum levels of IL-6 may be by regulating E2.published_or_final_versio

    Dynamics of Turing patterns under spatio-temporal forcing

    Get PDF
    We study, both theoretically and experimentally, the dynamical response of Turing patterns to a spatio-temporal forcing in the form of a travelling wave modulation of a control parameter. We show that from strictly spatial resonance, it is possible to induce new, generic dynamical behaviors, including temporally-modulated travelling waves and localized travelling soliton-like solutions. The latter make contact with the soliton solutions of P. Coullet Phys. Rev. Lett. {\bf 56}, 724 (1986) and provide a general framework which includes them. The stability diagram for the different propagating modes in the Lengyel-Epstein model is determined numerically. Direct observations of the predicted solutions in experiments carried out with light modulations in the photosensitive CDIMA reaction are also reported.Comment: 6 pages, 5 figure
    corecore